J. P. Barton and D. G. Infield, Energy storage and its use with intermittent renewable energy, IEEE Trans Energy Convers, vol.19, pp.441-448, 2004.

B. Dunn, H. Kamath, and J. M. Tarascon, Electrical energy storage for the grid: a battery of choices, Science, vol.334, pp.928-935, 2011.

S. Rehman, L. M. Al-hadhrami, and M. M. Alam, Pumped hydro energy storage system: a technological review, Renew Sust Energ Rev, vol.44, pp.586-598, 2015.

H. Ibrahim, A. Ilinca, and J. Perron, Energy storage systems-characteristics and comparisons, Renew Sust Energ Rev, vol.12, pp.1221-1250, 2008.

S. Kuravi, J. Trahan, D. Y. Goswami, M. M. Rahman, and E. K. Stefanakos, Thermal energy storage technologies and systems for concentrating solar power plants, Prog Ener Combust, vol.39, pp.285-319, 2013.

M. Aneke and M. Wang, Energy storage technologies and real life applications-a state of the art review, Appl Energy, vol.179, pp.350-377, 2016.

G. Li and X. Zheng, Thermal energy storage system integration forms for a sustainable future, Renew Sust Energ Rev, vol.62, pp.736-757, 2016.

U. Herrmann, B. Kelly, and H. Price, Two-tank molten salt storage for parabolic trough solar power plants, Energy, vol.29, pp.883-893, 2004.

E. John, M. Hale, and P. Selvam, Concrete as a thermal energy storage medium for thermocline solar energy storage systems, Sol Energy, vol.96, pp.94-204, 2013.

K. Willam, I. Rhee, and Y. Xi, Thermal degradation of heterogeneous concrete materials, J Mater Civ Eng, vol.17, pp.276-285, 2005.

W. M. Carty and U. Senapati, Porcelain-raw materials, processing, phase evolution, and mechanical behavior, J Am Ceram Soc, vol.81, pp.3-20, 1998.

D. Laing, W. D. Steinmann, R. Tamme, and C. Richter, Solid media thermal storage for parabolic trough power plants, Sol Energy, vol.80, pp.1283-1289, 2006.

X. Qiu, J. W. Thompson, and S. Billinge, PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data, J Appl Cryst, vol.37, pp.678-678, 2004.

, Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials, pp.790-800, 2010.

W. O. Soboyejo, Mechanical Properties of Engineered materials, Mechanical Engineering (Marcel Dekker, vol.2002, pp.414-455

, Standard test method for plane-strain fracture toughness of metallic materials, pp.399-90, 1997.

D. W. Van-krevelen, Graphical-statistical method for the study of structure and reaction processes of coal, Fuel, vol.29, pp.269-284, 1950.

D. R. Lide, Handbook of Chemistry and physics, 2009.

H. Wen, J. Lu, Y. Xiao, and J. Deng, Temperature dependence of thermal conductivity, diffusion and specific heat capacity for coal and rocks from coalfield, Thermochim Acta, vol.619, pp.41-47, 2015.

C. Dupont, R. Chiriac, G. Gauthier, and F. Toche, Heat capacity measurements of various biomass types and pyrolysis residues, Fuel, vol.115, pp.644-651, 2014.

E. A. Dean and J. A. Lopez, Empirical dependence of elastic moduli on porosity for ceramic materials, J Am Ceram Soc, vol.66, pp.366-370, 1983.

A. Sugarawa and Y. Yoshizawa, An investigation on the thermal conductivity of porous materials and its application to porous rock, Austr J Phys, vol.14, pp.469-480, 1961.

A. G. Evans and K. T. Faber, Crack-growth resistance of microcracking brittle materials, J Am Ceram Soc, vol.67, pp.255-260, 1984.

B. Budiansky, J. C. Amazigo, and A. G. Evans, Small-scale crack bridging and the fracture toughness of particulate-reinforced ceramics, J Mech Phys Solids, vol.36, pp.167-187, 1988.

D. R. Bloyer, R. O. Ritchie, V. Rao, and K. T. , Fracture toughness and R-curve behavior of laminated brittle-matrix composites, Metall Mater Trans A, vol.29, pp.2483-2496, 1998.

T. Fett and D. Munz, Stress intensity factors and weight functions for one-dimensional cracks, Kernforschungszentrum Karlsruhe Institut f? ur Materialforschung Rept. No. KFK, vol.5290, 1994.

T. M. Mower and A. S. Argon, Experimental investigations of crack trapping in brittle heterogeneous solids, Mech Mater, vol.19, pp.343-364, 1995.

X. Wang, Stress intensity factors and weight functions for deep semi-elliptical surface cracks in finite-thickness plates, Fatigue Fract Eng M, vol.25, pp.291-304, 2002.

J. C. Newman and I. S. Raju, An empirical stress-intensity factor equation for surface crack, Eng Fract Mech, vol.15, pp.185-192, 1981.

A. E. Morandeau and C. E. White, In situ X-ray pair distribution function analysis of accelerated carbonation of a synthetic calciumsilicate-hydrate gel, J Mater Chem A, vol.3, pp.8597-8605, 2015.

C. E. White, J. L. Provis, T. Proffen, D. P. Riley, and J. Van-deventer, Density functional modeling of the local structure of kaolinite subjected to thermal dehydroxylation, J Phys Chem A, vol.114, pp.4988-4996, 2010.

R. Fernandez, F. Martirena, and K. L. Scrivener, The origin of the pozzolanic activity of calcined clay minerals: a comparison between kaolinite, illite and montmorillonite, Cem Concr Res, vol.41, pp.113-122, 2011.

T. Peters and R. Iberg, Mineralogical changes during firing of calcium-rich brick clays, Am Ceram Soc Bull, vol.57, pp.503-509, 1978.

G. Cultrone, C. Rodriguez-navarro, E. Sebastian, O. Cazalla, D. La-torre et al., Carbonate and silicate phase reactions during ceramic firing, Eur J Miner, vol.13, pp.621-634, 2001.

V. Petkov, Y. Ren, S. Kabekkodu, and D. Murphy, Atomic pair distribution functions analysis of disordered low-Z materials, Phys Chem Chem Phys, vol.15, pp.8544-8554, 2013.

D. Blasi and C. , Modeling chemical and physical processes of wood and biomass pyrolysis, Prog Energy Combust Sci, vol.34, pp.47-90, 2008.

A. Meffre, X. Py, R. Olives, C. Bessada, E. Veron et al., High-temperature sensible heat-based thermal energy storage materials made of vitrified MSWI fly ashes, Waste Biomass Valor, vol.6, pp.1003-1014, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01898734