. A. Fig, F. Peterson, R. P. Vogel, M. Lachance, M. J. Froling et al., 25 Absolute and relative differences between the experimental and mass averaged yields for hydrothermal liquefaction of quaternary mixtures of model monomers. Notes and references 1 A, Energy Environ. Sci, vol.1, pp.32-65, 2008.

G. Déniel, A. Haarlemmer, E. Roubaud, J. Weiss-hortala, and . Fages, Energy valorisation of food processing residues and model compounds by hydrothermal liquefaction, Renewable and Sustainable Energy Reviews, vol.54, pp.1632-1652, 2016.
DOI : 10.1016/j.rser.2015.10.017

L. Barreiro, W. Prins, F. Ronsse, and W. Brilman, Hydrothermal liquefaction (HTL) of microalgae for biofuel production: State of the art review and future prospects, Biomass and Bioenergy, vol.53, pp.113-127, 2013.
DOI : 10.1016/j.biombioe.2012.12.029

L. Faeth, J. M. Jarvis, A. M. Mckenna, and P. E. Savage, Characterization of products from fast and isothermal hydrothermal liquefaction of microalgae, AIChE Journal, vol.2, issue.327, pp.815-828, 2016.
DOI : 10.1016/j.algal.2013.08.005

T. Karagöz, A. Bhaskar, Y. Muto, and . Sakata, Comparative studies of oil compositions produced from sawdust, rice husk, lignin and cellulose by hydrothermal treatment, Fuel, vol.84, issue.7-8, pp.875-884, 2005.
DOI : 10.1016/j.fuel.2005.01.004

A. B. Biller and . Ross, Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content, Bioresource Technology, vol.102, issue.1, pp.215-225, 2011.
DOI : 10.1016/j.biortech.2010.06.028

L. Teri, P. E. Luo, and . Savage, Hydrothermal Treatment of Protein, Polysaccharide, and Lipids Alone and in Mixtures, Energy & Fuels, vol.28, issue.12, pp.7501-7509, 2014.
DOI : 10.1021/ef501760d

G. A. Alenezi, R. C. Leeke, A. R. Santos, and . Khan, Hydrolysis kinetics of sunflower oil under subcritical water conditions, Chemical Engineering Research and Design, vol.87, issue.6, pp.867-873, 2009.
DOI : 10.1016/j.cherd.2008.12.009

C. Johnson and J. W. Tester, Lipid Transformation in Hydrothermal Processing of Whole Algal Cells, Industrial & Engineering Chemistry Research, vol.52, issue.32, pp.10988-10995, 2013.
DOI : 10.1021/ie400876w

M. Aida, Y. Sato, M. Watanabe, K. Tajima, T. Nonaka et al., Dehydration of d-glucose in high temperature water at pressures up to 80MPa, The Journal of Supercritical Fluids, vol.40, issue.3, pp.381-388, 2007.
DOI : 10.1016/j.supflu.2006.07.027

M. Aida, K. Tajima, M. Watanabe, Y. Saito, K. Kuroda et al., Reactions of d-fructose in water at temperatures up to 400??C and pressures up to 100MPa, The Journal of Supercritical Fluids, vol.42, issue.1, pp.110-119, 2007.
DOI : 10.1016/j.supflu.2006.12.017

A. T. Sato, K. Quitain, H. Kang, K. Daimon, and . Fujie, Reaction Kinetics of Amino Acid Decomposition in High-Temperature and High-Pressure Water, Industrial & Engineering Chemistry Research, vol.43, issue.13, pp.3217-3222, 2004.
DOI : 10.1021/ie020733n

I. Snåre, P. Kubi?ková, D. Mäki-arvela, K. Chichova, D. Y. Eränen et al., Catalytic deoxygenation of unsaturated renewable feedstocks for production of diesel fuel hydrocarbons, Fuel, vol.87, issue.6, pp.933-945, 2008.
DOI : 10.1016/j.fuel.2007.06.006

X. Fu, P. E. Lu, and . Savage, Hydrothermal Decarboxylation and Hydrogenation of Fatty Acids over Pt/C, ChemSusChem, vol.215, issue.4, pp.481-486, 2011.
DOI : 10.1016/S0021-9517(03)00032-0

A. Cantero, M. D. Bermejo, and M. J. Cocero, Kinetic analysis of cellulose depolymerization reactions in near critical water, The Journal of Supercritical Fluids, vol.75, pp.48-57, 2013.
DOI : 10.1016/j.supflu.2012.12.013

S. Rogalinski, G. Herrmann, and . Brunner, Production of amino acids from bovine serum albumin by continuous sub-critical water hydrolysis, The Journal of Supercritical Fluids, vol.36, issue.1, pp.49-58, 2005.
DOI : 10.1016/j.supflu.2005.03.001

L. Yong and Y. Matsumura, Kinetic Analysis of Lignin Hydrothermal Conversion in Sub- and Supercritical Water, Industrial & Engineering Chemistry Research, vol.52, issue.16, pp.5626-5639, 2013.
DOI : 10.1021/ie400600x

A. Kruse and . Gawlik, Biomass Conversion in Water at 330???410 ??C and 30???50 MPa. Identification of Key Compounds for Indicating Different Chemical Reaction Pathways, Industrial & Engineering Chemistry Research, vol.42, issue.2, pp.267-279, 2002.
DOI : 10.1021/ie0202773

D. I. Lee, D. A. Foustoukos, R. M. Sverjensky, G. D. Hazen, and . Cody, Hydrogen enhances the stability of glutamic acid in hydrothermal environments, Chemical Geology, vol.386, pp.184-189, 2014.
DOI : 10.1016/j.chemgeo.2014.08.012

D. I. Lee, D. A. Foustoukos, G. D. Sverjensky, R. M. Cody, and . Hazen, The effects of temperature, pH and redox state on the stability of glutamic acid in hydrothermal fluids, Geochimica et Cosmochimica Acta, vol.135, pp.66-86, 2014.
DOI : 10.1016/j.gca.2014.02.043

N. Barbier, N. Charon, A. Dupassieux, L. Loppinet-serani, J. Mahé et al., Hydrothermal conversion of lignin compounds. A detailed study of fragmentation and condensation reaction pathways, Biomass and Bioenergy, vol.46, pp.479-491, 2012.
DOI : 10.1016/j.biombioe.2012.07.011

URL : https://hal.archives-ouvertes.fr/hal-00751718

J. Yoshida, K. Kusaki, S. Ehara, and . Saka, Characterization of Low Molecular Weight Organic Acids from Beech Wood Treated in Supercritical Water, Applied Biochemistry and Biotechnology, vol.123, issue.1-3, pp.795-806, 2005.
DOI : 10.1385/ABAB:123:1-3:0795

A. Huet, C. Roubaud, D. Chirat, and . Lachenal, Hydrothermal treatment of black liquor for energy and phenolic platform molecules recovery in a pulp mill, Biomass and Bioenergy, vol.89, pp.105-112, 2016.
DOI : 10.1016/j.biombioe.2016.03.023

R. Lawson and M. T. Klein, Influence of water on guaiacol pyrolysis, Industrial & Engineering Chemistry Fundamentals, vol.24, issue.2, pp.203-208, 1985.
DOI : 10.1021/i100018a012

L. Huppert, B. C. Wu, S. H. Townsend, M. T. Klein, and S. C. Paspek, Hydrolysis in supercritical water: identification and implications of a polar transition state, Industrial & Engineering Chemistry Research, vol.28, issue.2, pp.161-165, 1989.
DOI : 10.1021/ie00086a006

C. J. Martino and P. E. Savage, Oxidation and Thermolysis of Methoxy-, Nitro-, and Hydroxy-Substituted Phenols in Supercritical Water, Industrial & Engineering Chemistry Research, vol.38, issue.5, pp.1784-1791, 1999.
DOI : 10.1021/ie9805741

T. Wahyudiono, M. Kanetake, M. Sasaki, and . Goto, Decomposition of a Lignin Model Compound under Hydrothermal Conditions, Chemical Engineering & Technology, vol.83, issue.8, pp.1113-1122, 2007.
DOI : 10.1002/ceat.200700066

M. Wahyudiono, M. Sasaki, J. Goto, and . Mater, Thermal decomposition of guaiacol in sub- and supercritical water and its kinetic analysis, Journal of Material Cycles and Waste Management, vol.76, issue.41, pp.68-79, 2011.
DOI : 10.1002/3527604162

L. Holliday, J. W. King, and G. R. List, Hydrolysis of Vegetable Oils in Sub- and Supercritical Water, Industrial & Engineering Chemistry Research, vol.36, issue.3, pp.932-935, 1997.
DOI : 10.1021/ie960668f

J. Kocsisová, J. Juhasz, and . Cvengro?, Hydrolysis of fatty acid esters in subcritical water, European Journal of Lipid Science and Technology, vol.57, issue.116, pp.652-658, 2006.
DOI : 10.1002/ejlt.200600061

A. and N. V18, 122-Aliments des animaux ? Détermination séquentielle des constituants pariétaux ? Méthode par traitement aux détergents neutre et acide etàetà l'acide sulfurique, 2013.

R. Stewart, G. J. Brennan, and . Provant, Characterization of blackcurrant stem lignin, Phytochemistry, vol.37, issue.6, pp.1703-1706, 1994.
DOI : 10.1016/S0031-9422(00)89596-5

E. J. Hilz, H. A. Bakx, A. G. Schols, and . Voragen, Cell wall polysaccharides in black currants and bilberries???characterisation in berries, juice, and press cake, Carbohydrate Polymers, vol.59, issue.4, pp.477-488, 2005.
DOI : 10.1016/j.carbpol.2004.11.002

G. Anouti, M. Haarlemmer, A. Déniel, and . Roubaud, Analysis of Physicochemical Properties of Bio-Oil from Hydrothermal Liquefaction of Blackcurrant Pomace, Energy & Fuels, vol.30, issue.1, pp.398-406, 2015.
DOI : 10.1021/acs.energyfuels.5b02264

URL : https://hal.archives-ouvertes.fr/hal-01609116

A. Castello, L. Kruse, and . Fiori, Biomass gasification in supercritical and subcritical water: The effect of the reactor material, Chemical Engineering Journal, vol.228, pp.535-544, 2013.
DOI : 10.1016/j.cej.2013.04.119

M. Yu-wu, E. Weiss-hortala, and R. Barna, Hydrothermal conversion of glucose in multiscale batch processes. Analysis of the gas, liquid and solid residues, The Journal of Supercritical Fluids, vol.79, pp.76-83, 2013.
DOI : 10.1016/j.supflu.2013.03.003

A. Castello, L. Kruse, and . Fiori, Low temperature supercritical water gasification of biomass constituents: Glucose/phenol mixtures, Biomass and Bioenergy, vol.73, pp.84-94, 2015.
DOI : 10.1016/j.biombioe.2014.12.010

L. An, T. Bagnell, C. R. Cablewski, R. W. Strauss, and . Trainor, Applications of High-Temperature Aqueous Media for Synthetic Organic Reactions, The Journal of Organic Chemistry, vol.62, issue.8, pp.2505-2511, 1997.
DOI : 10.1021/jo962115k

H. Sugano, K. Takagi, K. Hirano, and . Mashimo, Hydrothermal liquefaction of plantation biomass with two kinds of wastewater from paper industry, Journal of Materials Science, vol.44, issue.7, pp.2476-2486, 2008.
DOI : 10.3775/jie.83.770

J. Catallo, T. F. Shupe, J. L. Comeaux, and T. Junk, Transformation of glucose to volatile and semi-volatile products in hydrothermal (HT) systems, Biomass and Bioenergy, vol.34, issue.1, pp.1-13, 2010.
DOI : 10.1016/j.biombioe.2009.07.017

A. Srokol, A. Bouche, R. C. Van-estrik, T. Strik, J. A. Maschmeyer et al., Hydrothermal upgrading of biomass to biofuel; studies on some monosaccharide model compounds, Carbohydrate Research, vol.339, issue.10, pp.1717-1726, 2004.
DOI : 10.1016/j.carres.2004.04.018

J. R. Povoledo and . Vallentyne, Thermal reaction kinetics of the glutamic acid-pyroglutamic acid system in water, Geochimica et Cosmochimica Acta, vol.28, issue.5, pp.731-734, 1964.
DOI : 10.1016/0016-7037(64)90089-4

X. Yang, Z. Li, C. Li, L. Tong, and . Feng, Understanding low-lipid algae hydrothermal liquefaction characteristics and pathways through hydrothermal liquefaction of algal major components: Crude polysaccharides, crude proteins and their binary mixtures, Bioresource Technology, vol.196, pp.99-108, 2015.
DOI : 10.1016/j.biortech.2015.07.020

I. Chiaberge, T. Leonardis, G. Fiorani, P. Bianchi, A. Cesti et al., Amides in Bio-oil by Hydrothermal Liquefaction of Organic Wastes: A Mass Spectrometric Study of the Thermochemical Reaction Products of Binary Mixtures of Amino Acids and Fatty Acids, Energy & Fuels, vol.27, issue.9, pp.5287-5297, 2013.
DOI : 10.1021/ef4009983