W. Van-swaaij, S. Kersten, and W. Palz, Biomass power for the world: transformations to effective use. Biomass power for the world: transformations to effective use, pp.1-734, 2015.

N. Akiya and P. E. Savage, Roles of Water for Chemical Reactions in High-Temperature Water, Chemical Reviews, vol.102, issue.8, pp.2725-2750, 2002.
DOI : 10.1021/cr000668w

H. Weingärtner and E. U. Franck, Supercritical Water as a Solvent, ChemInform, vol.44, issue.31, pp.2672-2692, 2005.
DOI : 10.1002/chin.200531259

H. A. Ruiz, R. Jasso, R. M. Fernandes, B. D. Vicente, A. A. Teixeira et al., Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: A review, Renewable and Sustainable Energy Reviews, vol.21, pp.35-51, 2013.
DOI : 10.1016/j.rser.2012.11.069

S. S. Toor, L. Rosendahl, and A. Rudolf, Hydrothermal liquefaction of biomass: A review of subcritical water technologies, Energy, vol.36, issue.5, pp.2328-2342, 2011.
DOI : 10.1016/j.energy.2011.03.013

D. C. Elliott, P. Biller, A. B. Ross, A. J. Schmidt, and S. B. Jones, Hydrothermal liquefaction of biomass: Developments from batch to continuous process, Bioresource Technology, vol.178, pp.147-156, 2015.
DOI : 10.1016/j.biortech.2014.09.132

T. H. Pedersen, I. F. Grigoras, J. Hoffmann, S. S. Toor, I. M. Daraban et al., Continuous hydrothermal co-liquefaction of aspen wood and glycerol with water phase recirculation, Applied Energy, vol.162, pp.1034-1041, 2016.
DOI : 10.1016/j.apenergy.2015.10.165

D. L. Barreiro, W. Prins, F. Ronsse, and W. Brilman, Hydrothermal liquefaction (HTL) of microalgae for biofuel production: state of the art review and future prospects, Biomass Bioenergy, vol.53, issue.113, p.127, 2013.

M. Déniel, G. Haarlemmer, A. Roubaud, E. Weiss-hortala, and J. Fages, Energy valorisation of food processing residues and model compounds by hydrothermal liquefaction, Renewable and Sustainable Energy Reviews, vol.54, pp.1632-1652, 2016.
DOI : 10.1016/j.rser.2015.10.017

K. R. Arturi, S. Kucheryavskiy, and E. G. Søgaard, Performance of hydrothermal liquefaction (HTL) of biomass by multivariate data analysis, Fuel Processing Technology, vol.150, pp.94-103, 2016.
DOI : 10.1016/j.fuproc.2016.05.007

P. Biller and A. B. Ross, Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content, Bioresource Technology, vol.102, issue.1, pp.215-225, 2011.
DOI : 10.1016/j.biortech.2010.06.028

P. J. Valdez, V. J. Tocco, and P. E. Savage, A general kinetic model for the hydrothermal liquefaction of microalgae, Bioresource Technology, vol.163, pp.123-127, 2014.
DOI : 10.1016/j.biortech.2014.04.013

G. Teri, L. Luo, and P. E. Savage, Hydrothermal Treatment of Protein, Polysaccharide, and Lipids Alone and in Mixtures, Energy & Fuels, vol.28, issue.12, pp.7501-7509, 2014.
DOI : 10.1021/ef501760d

W. Yang, X. Li, Z. Li, C. Tong, and L. Feng, Understanding low-lipid algae hydrothermal liquefaction characteristics and pathways through hydrothermal liquefaction of algal major components: Crude polysaccharides, crude proteins and their binary mixtures, Bioresource Technology, vol.196, pp.99-108, 2015.
DOI : 10.1016/j.biortech.2015.07.020

S. Leow, J. R. Witter, D. R. Vardon, B. K. Sharma, J. S. Guest et al., Prediction of microalgae hydrothermal liquefaction products from feedstock biochemical composition, Green Chemistry, vol.16, issue.6, pp.3584-3599, 2015.
DOI : 10.1039/a908861j

A. and N. En, 14774 1 Biocombustibles solides Détermina tion de la teneur en humidité Méthode par séchage a ` l'e ´tuve Partie 1: humidité totale Méthode de référence, 2010.

A. and N. V18, 122 Aliments des animaux Détermination séquentielle des constituants pariétaux Méthode par traitement aux détergents neutre et acide et a ` l'acide sulfurique, 2013.

Y. Dote, S. Inoue, T. Ogi, and S. Yokoyama, Distribution of nitrogen to oil products from liquefaction of amino acids, Bioresource Technology, vol.64, issue.2, p.160, 1998.
DOI : 10.1016/S0960-8524(97)00079-5

Y. Dote, S. Inoue, T. Ogi, and S. Yokoyama, Studies on the direct liquefaction of protein-contained biomass: The distribution of nitrogen in the products, Biomass and Bioenergy, vol.11, issue.6, pp.491-498, 1996.
DOI : 10.1016/S0961-9534(96)00045-1

W. Tinsson, Plans d'expérience: constructions et analyses statistiques, Mathématiques et Applications, vol.67, 2010.

S. Anouti, G. Haarlemmer, M. Déniel, and A. Roubaud, Analysis of Physicochemical Properties of Bio-Oil from Hydrothermal Liquefaction of Blackcurrant Pomace, Energy & Fuels, vol.30, issue.1, pp.398-406, 2015.
DOI : 10.1021/acs.energyfuels.5b02264

URL : https://hal.archives-ouvertes.fr/hal-01609116

S. Karagöz, T. Bhaskar, A. Muto, and Y. Sakata, Comparative studies of oil compositions produced from sawdust, rice husk, lignin and cellulose by hydrothermal treatment, Fuel, vol.84, issue.7-8, p.884, 2005.
DOI : 10.1016/j.fuel.2005.01.004

G. Akgül and A. Kruse, Influence of salts on the subcritical water-gas shift reaction, The Journal of Supercritical Fluids, vol.66, issue.207, p.214, 2012.
DOI : 10.1016/j.supflu.2011.10.009

S. Changi, M. Zhu, and P. E. Savage, Hydrothermal Reaction Kinetics and Pathways of Phenylalanine Alone and in Binary Mixtures, ChemSusChem, vol.25, pp.1743-1757, 2012.
DOI : 10.1021/ef2004046

S. Yin and Z. Tan, Hydrothermal liquefaction of cellulose to bio-oil under acidic, neutral and alkaline conditions, Applied Energy, vol.92, issue.234, p.239, 2012.
DOI : 10.1016/j.apenergy.2011.10.041

D. R. Vardon, B. K. Sharma, J. Scott, G. Yu, Z. Wang et al., Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge, Bioresource Technology, vol.102, issue.17, pp.8295-8303, 2011.
DOI : 10.1016/j.biortech.2011.06.041

T. Minowa, S. Yokoyama, M. Kishimoto, and T. Okakura, Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction, Fuel, vol.74, issue.12, pp.1735-1738, 1995.
DOI : 10.1016/0016-2361(95)80001-X

T. Minowa, T. Kondo, and S. T. Sudirjo, Thermochemical liquefaction of indonesian biomass residues, Biomass and Bioenergy, vol.14, issue.5-6, pp.517-524, 1998.
DOI : 10.1016/S0961-9534(98)00006-3

T. Minowa, M. Murakami, Y. Dote, T. Ogi, and S. Yokoyama, Oil production from garbage by thermochemical liquefaction, Biomass and Bioenergy, vol.8, issue.2, p.120, 1995.
DOI : 10.1016/0961-9534(95)00017-2

H. Mazaheri, K. T. Lee, S. Bhatia, and A. R. Mohamed, Subcritical water liquefaction of oil palm fruit press fiber for the production of bio-oil: Effect of catalysts, Bioresource Technology, vol.101, issue.2, pp.745-751, 2010.
DOI : 10.1016/j.biortech.2009.08.042

H. Mazaheri, K. T. Lee, and A. R. Mohamed, Influence of tempera ture on liquid products yield of oil palm shell via subcritical water liquefaction in the presence of alkali catalyst, Fuel Process. Technol, vol.110, p.205, 2013.

P. J. Valdez, J. G. Dickinson, and P. E. Savage, Characterization of product fractions from hydrothermal liquefaction of nan nochloropsis sp. and the influence of solvents, Energy Fuels, vol.25, issue.3235, p.3243, 2011.

D. L. Barreiro, S. Riede, U. Hornung, A. Kruse, and W. Prins, Hydrothermal liquefaction of microalgae: effect on the product yields of the addition of an organic solvent to separate the aqueous phase and the biocrude oil, Algal Res, vol.12, issue.206, p.212, 2015.