K. Ullah, K. Sharma, V. Dhingra, and S. , Assessing the lignocellulosic biomass resources potential in developing countries: a critical review, Renew Sust Energ Rev, vol.51, pp.682-698, 2015.

H. Escalante, J. Orduz, and H. J. Zapata, Potencial energético de la biomasa residual, Ministerio de Minas y Energia -Republica de Colombia (ed) Atlas del Potencial Energético Biomasa Residual en Colomb, pp.155-172, 2010.

E. E. García-nj-a and . Ya, Generación y uso de biomasa en plantas de beneficio de palma de aceite en Colombia-Power generation and use of biomass at palm oil mills in Colombia, Rev Palmas, vol.31, pp.41-48, 2010.

, Food and Agriculture Organisation of the United Nations (2014) FAO statistical yearbook 2014: Latin America and the Caribbean

L. Fryda, C. Daza, and J. Pels, Lab-scale co-firing of virgin and torrefied bamboo species Guadua angustifolia Kunth as a fuel substitute in coal fired power plants, Biomass Bioenergy, vol.65, pp.28-41, 2014.

X. Londoño, G. C. Camayo, N. Riaño, and Y. López, Characterization of the anatomy of Guadua angustifolia (Poaceae: Bambusoideae) culms, Bamboo Sci Cult, vol.16, pp.18-31, 2002.

P. Kuo, W. Wu, and W. Chen, Gasification performances of raw and torrefied biomass in a downdraft fixed bed gasifier using thermodynamic analysis, Fuel, vol.117, pp.1231-1241, 2014.

T. Wongsiriamnuay, N. Kannang, and N. Tippayawong, Effect of operating conditions on catalytic gasification of bamboo in a fluidized bed, Int J Chem Eng, 2013.

D. Chen, D. Liu, and H. Zhang, Bamboo pyrolysis using TG-FTIR and a lab-scale reactor: analysis of pyrolysis behavior, product properties, and carbon and energy yields, Fuel, vol.148, pp.79-86, 2015.

F. Núñez, C. A. Cediel, A. Hernández, and L. C. , Oil palm empty bunch fruits and coconut shells gasification using a lab-scale downdraft fixed bed gasifier at Universidad Nacional de Colombia, 20th Eur. Conf. Exhib, pp.1112-1114, 2012.

L. M. Romero-millán, C. Domínguez, M. A. , S. Vargas, and F. E. , Efecto de la temperatura en el potencial de aprovechamiento energético de los productos de la pirólisis del cuesco de palma, Rev Tecnura, vol.20, pp.89-99, 2016.

P. Basu, Pyrolysis. In: Biomass gasification, pyrolysis and torrefaction, Second Edi, pp.147-176, 2013.

E. David and J. Kopac, Activated carbons derived from residual biomass pyrolysis and their CO2 adsorption capacity, J Anal Appl Pyrolysis, vol.110, pp.322-332, 2014.

L. Ye, J. Zhang, and J. Zhao, Properties of biochar obtained from pyrolysis of bamboo shoot shell, J Anal Appl Pyrolysis, vol.114, pp.172-178, 2015.

F. Abnisa, A. Arami-niya, W. Daud, and W. , Utilization of oil palm tree residues to produce bio-oil and bio-char via pyrolysis, Energy Convers Manag, vol.76, pp.1073-1082, 2013.

J. E. White, W. J. Catallo, and B. L. Legendre, Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies, J Anal Appl Pyrolysis, vol.91, pp.1-33, 2011.

S. Vyazovkin and C. A. Wight, Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data, Thermochim Acta, vol.340, pp.53-68, 1999.

S. Vyazovkin, A. K. Burnham, and J. M. Criado, ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data, Thermochim Acta, vol.520, pp.1-19, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01350051

X. Huang, J. Cao, and X. Zhao, Pyrolysis kinetics of soybean straw using thermogravimetric analysis, Fuel, vol.169, pp.93-98, 2016.

Z. Ma, D. Chen, and J. Gu, Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA-FTIR and model-free integral methods, Energy Convers Manag, vol.89, pp.251-259, 2015.

K. Slopiecka, P. Bartocci, and F. Fantozzi, Thermogravimetric analysis and kinetic study of poplar wood pyrolysis, Appl Energy, vol.97, pp.491-497, 2012.

X. Wang, M. Hu, and W. Hu, Thermogravimetric kinetic study of agricultural residue biomass pyrolysis based on combined kinetics, vol.219, pp.510-520, 2016.

A. Perejón, P. E. Sánchez-jiménez, J. M. Criado, and L. A. Pérez-maqueda, Kinetic analysis of complex solid-state reactions. A new deconvolution procedure, J Phys Chem B, vol.115, pp.1780-1791, 2011.

M. Hu, Z. Chen, and S. Wang, Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser-Suzuki deconvolution, and iso-conversional method, Energy Convers Manag, vol.118, pp.1-11, 2016.

B. Jankovi?, Devolatilization kinetics of swine manure solid pyrolysis using deconvolution procedure. Determination of the biooil/liquid yields and char gasification, Fuel Process Technol, vol.138, pp.1-13, 2015.

M. T. Taghizadeh, N. Yeganeh, and M. Rezaei, Kinetic analysis of the complex process of poly(vinyl alcohol) pyrolysis using a new coupled peak deconvolution method, J Therm Anal Calorim, vol.118, pp.1733-1746, 2014.

A. Cuéllar and I. Muñoz, Fibra de guadua como refuerzo de matrices poliméricas -Bamboo fiber reinforcement for polymer matrix, DYNA, vol.77, pp.137-142, 2010.

Q. Mortley, W. A. Mellowes, and S. Thomas, Activated carbons from materials of varying morphological structure, Themochim Acta, vol.129, pp.173-186, 1988.

J. A. García-núñez, M. García-pérez, and K. C. Das, Determination of kinetic parameters of thermal degradation of palm oil mill byproducts using thermogravimetric analysis and differential scanning calorimetry, Trans ASABE, vol.51, pp.547-557, 2008.

M. E. Brown, Handbook of thermal analysis and calorimetry, vol.1, 1998.

A. Anca-couce, A. Berger, and N. Zobel, How to determine consistent biomass pyrolysis kinetics in a parallel reaction scheme, Fuel, vol.123, pp.230-240, 2014.

A. Anca-couce, N. Zobel, A. Berger, and F. Behrendt, Smouldering of pine wood: kinetics and reaction heats, Combust Flame, vol.159, pp.1708-1719, 2012.

R. Svoboda and J. Málek, Applicability of Fraser-Suzuki function in kinetic analysis of complex crystallization processes, J Therm Anal Calorim, vol.111, pp.1045-1056, 2013.

P. Rajeshwari and T. K. Dey, Advanced isoconversional and master plot analyses on non-isothermal degradation kinetics of AlN (nano)-reinforced HDPE composites, J Therm Anal Calorim, vol.125, pp.369-386, 2016.

F. J. Gotor, J. M. Criado, J. Malek, and N. Koga, Kinetic analysis of solid-state reactions: the universality of master plots for analyzing isothermal and nonisothermal experiments, J Phys Chem A, pp.10777-10782, 2000.

P. E. Sánchez-jiménez, L. A. Pérez-maqueda, A. Perejón, and J. M. Criado, Generalized master plots as a straightforward approach for determining the kinetic model: the case of cellulose pyrolysis, Thermochim Acta, vol.552, pp.54-59, 2013.

T. Kan, V. Strezov, and T. J. Evans, Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters, Renew Sust Energ Rev, vol.57, pp.1126-1140, 2016.

H. Yang, R. Yan, and H. Chen, Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel, vol.86, pp.1781-1788, 2007.

Q. Liu, Z. Zhong, S. Wang, and Z. Luo, Interactions of biomass components during pyrolysis: a TG-FTIR study, J Anal Appl Pyrolysis, vol.90, pp.213-218, 2011.

V. Mendu, A. E. Harman-ware, and M. Crocker, Identification and thermochemical analysis of high-lignin feedstocks for biofuel and biochemical production, Biotechnol Biofuels, vol.4, p.43, 2011.

F. Collard and J. Blin, A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin, Renew Sust Energ Rev, vol.38, pp.594-608, 2014.

S. D. Stefanidis, K. G. Kalogiannis, and E. F. Iliopoulou, A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin, J Anal Appl Pyrolysis, vol.105, pp.143-150, 2014.

G. Jiang, D. J. Nowakowski, and A. V. Bridgwater, A systematic study of the kinetics of lignin pyrolysis, Thermochim Acta, vol.498, pp.61-66, 2010.

J. A. Caballero, J. A. Conesa, R. Font, and A. Marcilla, Pyrolysis kinetics of almond shells and olive stones considering their organic fractions, J Anal Appl Pyrolysis, vol.42, pp.15-21, 1997.

Z. Chen, M. Hu, and X. Zhu, Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis, Bioresour Technol, vol.192, pp.441-450, 2015.

A. G. Barneto, J. A. Carmona, J. Alfonso, and R. S. Serrano, Simulation of the thermogravimetry analysis of three non-wood pulps, Bioresour Technol, vol.101, pp.3220-3229, 2010.

C. Branca, A. Albano, D. Blasi, and C. , Critical evaluation of global mechanisms of wood devolatilization, Thermochim Acta, vol.429, pp.133-141, 2005.

A. Gani and I. Naruse, Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass, Renew Energy, vol.32, pp.649-661, 2007.

D. Lv, M. Xu, and X. Liu, Effect of cellulose, lignin, alkali and alkaline earth metallic species on biomass pyrolysis and gasification, Fuel Process Technol, vol.91, pp.903-909, 2010.

S. Hu, J. A. Xu, and M. , Kinetic study of Chinese biomass slow pyrolysis: comparison of different kinetic models, Fuel, vol.86, pp.2778-2788, 2007.

P. E. Sanchez-jimenez, L. A. Pérez-maqueda, A. Perejon, and J. M. Criado, Generalized kinetic master plots for the thermal degradation of polymers following a random scission mechanism, J Phys Chem A, vol.114, pp.7868-7876, 2010.

A. K. Burnham and X. Zhou, Broadbelt LJ Critical review of the global chemical kinetics of cellulose thermal decomposition