L. Aouba, C. Bories, M. Coutand, B. Perrin, and H. Lemercier, Properties of fired clay bricks with incorporated biomasses: cases of olive stone flour and wheat straw residues, Constr. Build. Mater, vol.102, pp.7-13, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01849714

C. Bories, M. Borredon, E. Vedrenne, and G. Vilarem, Development of eco-friendly porous fired clay bricks using pore-forming agents: a review, J. Environ. Manag, vol.143, pp.186-196, 2014.
DOI : 10.1016/j.jenvman.2014.05.006

C. Bories, L. Aouba, E. Vedrenne, and G. Vilarem, Fired clay bricks using agricultural biomass wastes: study and characterization, Constr. Build. Mater, vol.91, pp.158-163, 2015.
DOI : 10.1016/j.conbuildmat.2015.05.006

G. Cultrone, E. Sebastián, K. Elert, M. J. De-la-torre, O. Cazalla et al., Influence of mineralogy and firing temperature on the porosity of bricks, J. Eur. Ceram. Soc, vol.24, pp.547-564, 2004.

I. Demir, An investigation on the production of construction brick with processed waste tea, Build. Environ, vol.41, pp.1274-1278, 2006.

I. Demir, Effect of organic residues addition on the technological properties of clay bricks, Waste Manag, vol.28, pp.622-627, 2008.

C. Diblasi, Modeling chemical and physical processes of wood and biomass pyrolysis, Prog. Energy Combust. Sci, vol.34, pp.47-90, 2008.

K. C. Faria, R. F. Gurgel, and J. N. Holanda, Recycling of sugarcane bagasse ash waste in the production of clay bricks, J. Environ. Manag, vol.101, pp.7-12, 2012.

T. Fateh, T. Rogaume, J. Luche, F. Richard, and F. Jabouille, Kinetic and mechanism of the thermal degradation of a plywood by using thermogravimetry and Fouriertransformed infrared spectroscopy analysis in nitrogen and air atmosphere, Fire Saf. J, vol.58, pp.25-37, 2013.

S. Ferrer, A. Mezquita, M. P. Gomez-tena, C. Machi, and E. Monfort, Estimation of the heat of reaction in traditional ceramic compositions, Appl. Clay Sci, vol.108, pp.28-39, 2015.

S. Freyburg and A. Schwarz, Influence of the clay type on the pore structure of structural ceramics, J. Eur. Ceram. Soc, vol.27, pp.1727-1733, 2007.

I. González, E. Galán, A. Miras, and M. A. Vázquez, CO 2 emissions derived from raw materials used in brick factories, Applications to Andalusia (Southern Spain). Appl. Clay Sci, vol.52, pp.193-198, 2011.

M. L. Gualtieri, A. F. Gualtieri, S. Gagliardi, P. Ruffini, R. Ferrari et al., Thermal conductivity of fired clays: effects of mineralogical and physical properties of the raw materials, Appl. Clay Sci, vol.49, pp.269-275, 2010.

S. Guggenheim, Y. Chang, and A. F. Van-groos, Muscovite dehydroxylation: hightemperature studies, Am. Mineral, vol.72, pp.537-550, 1987.

T. Hirono and W. Tanikawa, Implications of the thermal properties and kinetic parameters of dehydroxylation of mica minerals for fault weakening, frictional heating, and earthquake energetics, Earth Planet. Sci. Lett, vol.307, pp.161-172, 2011.

T. J. Holland and R. Powell, An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids: thermodynamic dataset for phases of petrological interest, J. Metamorph. Geol, vol.29, pp.333-383, 2011.

J. Khedari, N. Nankongnab, J. Hirunlabh, and S. Teekasap, New low-cost insulation particleboards from mixture of durian peel and coconut coir, Build. Environ, vol.39, pp.59-65, 2004.

C. Koroneos and A. Dompros, Environmental assessment of brick production in Greece, Build. Environ, vol.42, pp.2114-2123, 2007.

D. R. Lide, CRC Handbook of Chemistry and Physics, 2005.

D. López-gonzález, M. Fernandez-lopez, J. L. Valverde, and L. Sanchez-silva, Thermogravimetric-mass spectrometric analysis on combustion of lignocellulosic biomass, Bioresour. Technol, vol.143, pp.562-574, 2013.

M. V. Madurwar, R. V. Ralegaonkar, and S. A. Mandavgane, Application of agro-waste for sustainable construction materials: a review, Constr. Build. Mater, vol.38, pp.872-878, 2013.

M. Velasco, P. Morales-ortíz, M. P. Giró, M. A. Velasco, and L. , Fired clay bricks manufactured by adding wastes as sustainable construction material-a review, Constr. Build. Mater, vol.63, pp.97-107, 2014.

. , Solid Biofuels-Determination of Calorific Value, 2010.

C. Onésippe, N. Passe-coutrin, F. Toro, S. Delvasto, K. Bilba et al., Sugar cane bagasse fibres reinforced cement composites: thermal considerations, Compos. Part Appl. Sci. Manuf, vol.41, pp.549-556, 2010.

V. Pasangulapati, K. D. Ramachandriya, A. Kumar, M. R. Wilkins, C. L. Jones et al., Effects of cellulose, hemicellulose and lignin on thermochemical conversion characteristics of the selected biomass, Bioresour. Technol, vol.114, pp.663-669, 2012.

T. Peters and R. Iberg, Mineralogical changes during firing of calcium-rich brick clays, Am. Ceram. Soc. Buelletin, pp.503-505, 1978.

N. Quijorna, A. Coz, A. Andres, and C. Cheeseman, Recycling of Waelz slag and waste foundry sand in red clay bricks, Resour. Conserv. Recycl, vol.65, pp.1-10, 2012.

S. P. Raut, R. V. Ralegaonkar, and S. A. Mandavgane, Development of sustainable construction material using industrial and agricultural solid waste: a review of wastecreate bricks, Constr. Build. Mater, vol.25, pp.4037-4042, 2011.

S. Robert and . Boynton, Chemistry and Technology of Lime and Limestone, 1980.

D. K. Shen and S. Gu, The mechanism for thermal decomposition of cellulose and its main products, Bioresour. Technol, vol.100, pp.6496-6504, 2009.

M. Stenseng, A. Jensen, and K. Dam-johansen, Investigation of biomass pyrolysis by thermogravimetric analysis and differential scanning calorimetry, J. Anal. Appl. Pyrolysis, vol.58, pp.765-780, 2001.

M. Sutcu and S. Akkurt, The use of recycled paper processing residues in making porous brick with reduced thermal conductivity, Ceram. Int, vol.35, pp.2625-2631, 2009.

R. Toledo, D. Dossantos, R. Fariajr, J. Carrio, L. Auler et al., Gas release during clay firing and evolution of ceramic properties, Appl. Clay Sci, vol.27, pp.151-157, 2004.

S. V. Vassilev, D. Baxter, L. K. Andersen, and C. G. Vassileva, An overview of the composition and application of biomass ash, Fuel, vol.105, pp.19-39, 2013.

A. S. Wagh, R. B. Poeppel, and J. P. Singh, Open pore description of mechanical properties of ceramics, J. Mater. Sci, vol.26, pp.3862-3868, 1991.

I. Yakub, J. Du, and W. O. Soboyejo, Mechanical properties, modeling and design of porous clay ceramics, Mater. Sci. Eng. A, vol.558, pp.21-29, 2012.

H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel, vol.86, pp.1781-1788, 2007.

I. Zabalza-bribián, A. Valero-capilla, and A. Aranda-usón, Life cycle assessment of building materials: comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential, Build. Environ, vol.46, pp.1133-1140, 2011.