M. Nofar and C. B. Park, Poly (lactic acid) foaming. Progress in Polymer Science, pp.1721-1741, 2014.

N. Najafi, M. C. Heuzey, P. J. Carreau, and P. M. Wood-adams, Control of thermal degradation of polylactide (PLA)-clay nanocomposites using chain extenders, Polymer Degradation and Stability, vol.97, issue.4, pp.554-565, 2012.
DOI : 10.1016/j.polymdegradstab.2012.01.016

J. Wang, W. Zhu, H. Zhang, and C. B. Park, Continuous processing of low-density, microcellular poly(lactic acid) foams with controlled cell morphology and crystallinity, Chemical Engineering Science, vol.75, pp.390-399, 2012.
DOI : 10.1016/j.ces.2012.02.051

M. Nofar, A. Ameli, and C. B. Park, A novel technology to manufacture biodegradable polylactide bead foam products, Materials & Design, vol.83, pp.413-421, 2015.
DOI : 10.1016/j.matdes.2015.06.052

M. Nofar, A. Ameli, and C. B. Park, Development of polylactide bead foams with double crystal melting peaks, Polymer, vol.69, pp.83-94, 2015.
DOI : 10.1016/j.polymer.2015.05.048

M. Mihai, M. A. Huneault, and B. D. Favis, Crystallinity development in cellular poly(lactic acid) in the presence of supercritical carbon dioxide, Journal of Applied Polymer Science, vol.117, issue.5, pp.2920-2932, 2009.
DOI : 10.1002/app.30338

P. Rachtanapun, S. E. Selke, and L. M. Matuana, Microcellular foam of polymer blends of HDPE/PP and their composites with wood fiber, Journal of Applied Polymer Science, vol.88, issue.12, pp.2842-2850, 2003.
DOI : 10.1002/app.12170

M. Keshtkar, M. Nofar, C. B. Park, and P. J. Carreau, Extruded PLA/clay nanocomposite foams blown with supercritical CO2, Polymer, vol.55, issue.16, pp.4077-4090, 2014.
DOI : 10.1016/j.polymer.2014.06.059

Y. W. Di, S. Iannace, D. Maio, E. Nicolais, and L. , Poly(lactic acid)/organoclay nanocomposites: Thermal, rheological properties and foam processing, Journal of Polymer Science Part B: Polymer Physics, vol.27, issue.6, pp.689-698, 2005.
DOI : 10.1002/polb.20366

M. Sauceau, J. Fages, A. Common, C. Nikitine, and E. Rodier, New challenges in polymer foaming: A review of extrusion processes assisted by supercritical carbon dioxide, Progress in Polymer Science, vol.36, issue.6, pp.749-766, 2011.
DOI : 10.1016/j.progpolymsci.2010.12.004

URL : https://hal.archives-ouvertes.fr/hal-01152908

M. Takada, S. Hasegawa, and M. Ohshima, Crystallization kinetics of poly(L-lactide) in contact with pressurized CO2, DOI: 10.1106/72D3-9PX6-7C60-RD2X [13], pp.186-196, 2004.
DOI : 10.1002/pen.20017

T. Vigh, M. Sauceau, J. Fages, E. Rodier, I. Wagner et al., plasticization on the degradation and residual crystallinity of melt-extruded spironolactone, Polymers for Advanced Technologies, vol.878, issue.10, pp.1135-1144, 2014.
DOI : 10.1002/pat.3367

R. Jemai, J. C. Benezet, J. M. Lopez-cuesta, E. Rodier, and J. Fages, Foaming of poly(3- hydroxybutyrate-co-3-hydroxyvalerate)/organo- clays nano-biocomposites by a continuous supercritical CO 2 assisted extrusion process, European Polymer Journal, vol.61, pp.157-171, 2014.

E. W. Fischer, H. J. Sterzel, and G. Wegner, Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions, Kolloid-Zeitschrift und Zeitschrift f??r Polymere, vol.68, issue.5, pp.980-990, 1973.
DOI : 10.1007/BF01498927

L. M. Matuana and C. A. Diaz, through a Continuous-Extrusion Process, Industrial & Engineering Chemistry Research, vol.49, issue.5, pp.2186-2193, 2010.
DOI : 10.1021/ie9011694

L. M. Matuana and O. Faruk, Effect of gas saturation conditions on the expansion ratio of microcellular poly(lactic acid)/wood-flour composites, Express Polymer Letters, vol.4, issue.10, pp.621-631, 2010.
DOI : 10.3144/expresspolymlett.2010.77

A. Bergeret and J. C. Benezet, Natural Fibre-Reinforced Biofoams, International Journal of Polymer Science, vol.8, issue.4, p.14, 2011.
DOI : 10.1016/j.compscitech.2005.10.015

Q. Li and L. M. Matuana, Foam extrusion of high density polyethylene/wood-flour composites using chemical foaming agents, Journal of Applied Polymer Science, vol.26, issue.14, pp.3139-3150, 2003.
DOI : 10.1002/app.12003

T. Tábi, I. E. Sajó, F. Szabó, A. S. Luyt, and J. G. Kovács, Crystalline structure of annealed polylactic acid and its relation to processing, Express Polymer Letters, vol.4, issue.10, pp.659-668, 2010.
DOI : 10.3144/expresspolymlett.2010.80

L. Marec, P. E. Ferry, L. Quantin, J. C. Benezet, J. C. Bonfils et al., Influence of melt processing conditions on poly(lactic acid) degradation: Molar mass distribution and crystallization, Polymer Degradation and Stability, vol.110, pp.353-363, 2014.
DOI : 10.1016/j.polymdegradstab.2014.10.003

URL : https://hal.archives-ouvertes.fr/hal-01268920

J. P. Garancher and A. Fernyhough, Expansion and dimensional stability of semi-crystalline polylactic acid foams, Polymer Degradation and Stability, vol.100, pp.21-28, 2014.
DOI : 10.1016/j.polymdegradstab.2013.12.037

D. Battegazzore, S. Bocchini, and A. Frache, Crystallization kinetics of poly(lactic acid)-talc composites, Express Polymer Letters, vol.5, issue.10, pp.849-858, 2011.
DOI : 10.3144/expresspolymlett.2011.84

A. Petchsuk, S. Buchatip, W. Supmak, M. Opaprakasit, and P. Opaprakasit, Preparation and properties of multi-branched poly(D-lactide) derived from polyglycidol and its stereocomplex blends, Express Polymer Letters, vol.8, issue.10, pp.779-789, 2014.
DOI : 10.3144/expresspolymlett.2014.80

T. Tábi, P. Tamás, and J. G. Kovács, Chopped basalt fibres: A new perspective in reinforcing poly(lactic acid) to produce injection moulded engineering composites from renewable and natural resources, Express Polymer Letters, vol.7, issue.2, pp.107-119, 2013.
DOI : 10.3144/expresspolymlett.2013.11