C. Rauwendaal, Polymer extrusion, 2001.

S. K. Sharma, S. Mulvaney, and S. Rizvi, Food process engineering: theory and laboratory experiments, 2000.

J. Breitenbach, Melt extrusion: from process to drug delivery technology, Eur J Pharm Biopharm, vol.54, pp.107-124, 2002.

S. T. Lee, Foam extrusion: principles and practice, 2000.

D. L. Tomasko, A. Burley, L. Feng, S. K. Yeh, K. Miyazono et al., Development of CO 2 for polymer foam applications, J Supercrit Fluids, vol.47, pp.493-502, 2009.

C. Eckert, B. Knutson, and P. Debenedetti, Supercritical fluids as solvents for chemical and materials processing, Nature, vol.383, pp.313-83, 1996.

S. P. Nalawade, F. Picchioni, and L. Janssen, Supercritical carbon dioxide as a green solvent for processing polymer melts: processing aspects and applications, Prog Polym Sci, vol.31, pp.19-43, 2006.

A. I. Cooper, Synthesis and processing of polymers using supercritical carbon dioxide, J Mater Chem, vol.10, pp.207-241, 2000.

D. L. Tomasko, H. B. Li, D. H. Liu, X. M. Han, M. J. Wingert et al., A review of CO 2 applications in the processing of polymers, Ind Eng Chem Res, vol.42, pp.6431-56, 2003.

S. C. Kazarian, Polymer processing with supercritical fluids, Polym Sci, vol.42, pp.78-101, 2000.

Y. Sato, K. Fujiwara, T. Takikawa, S. Takishima, and H. Masuoka, Solubilities and diffusion coefficients of carbon dioxide and nitrogen in polypropylene, high-density polyethylene, and polystyrene under high pressures and temperatures, Fluid Phase Equilib, vol.162, pp.261-76, 1999.

D. Gourgouillon, H. Avelino, J. Fareleira, N. Da-ponte, and M. , Simultaneous viscosity and density measurement of supercritical CO 2 -saturated PEG 400, J Supercrit Fluids, vol.13, pp.177-85, 1998.

C. Kwag, C. W. Manke, and E. Gulari, Rheology of molten polystyrene with dissolved supercritical and near-critical gases, J Polym Sci B Polym Phys, vol.37, pp.2771-81, 1999.

W. Wang, E. J. Kramer, and W. H. Sachse, Effects of high-pressure CO 2 on the glass transition temperature and mechanical properties of polystyrene, J Polym Sci B Polym Phys, vol.20, pp.1371-84, 1982.

P. D. Condo, I. C. Sanchez, C. G. Panayiotou, and K. P. Johnston, Glass transition behavior including retrograde vitrification of polymers with compressed fluid diluents, Macromolecules, vol.25, pp.6119-6146, 1992.

J. Royer, Y. Gay, M. Adam, J. Desimone, and S. Khan, Polymer melt rheology with high pressure CO 2 using a novel magnetically levitated sphere rheometer, Polymer, vol.43, pp.2375-83, 2002.

S. Areerat, T. Nagata, and M. Ohshima, Measurement and prediction of LDPE/CO 2 solution viscosity, Polym Eng Sci, vol.42, pp.2234-2279, 2002.

M. Lee, C. Tzoganakis, and C. B. Park, Effects of supercritical CO 2 on the viscosity and morphology of polymer blends, Adv Polym Technol, vol.19, pp.300-311, 2000.

K. Y. Cho and S. Rizvi, 3D microstructure of supercritical fluid extrudates. I. Melt rheology and microstructure formation, Food Res Int, vol.42, pp.595-602, 2009.

H. Li, L. J. Lee, and D. L. Tomasko, Effect of carbon dioxide on the interfacial tension of polymer melts, Ind Eng Chem Res, vol.43, pp.509-523, 2004.

P. T. Jaeger, R. Eggers, and H. Baumgartl, Interfacial properties of high viscous liquids in a supercritical carbon dioxide atmosphere, J Supercrit Fluids, vol.24, pp.203-220, 2002.

L. Jacobs, M. F. Kemmere, and J. Keurentjes, Sustainable polymer foaming using high pressure carbon dioxide: a review on fundamentals, processes and applications, Green Chem, vol.10, pp.731-739, 2008.

T. A. Walker, D. J. Frankowski, and R. J. Spontak, Thermodynamics and kinetic processes of polymer blends and block copolymers in the presence of pressurized carbon dioxide, Adv Mater, vol.20, pp.879-98, 2008.

R. Gendron, M. F. Champagne, and J. Reignier, Supercritical fluids in thermoplastics foaming: facts or fallacies?, Cell Polym, vol.25, pp.199-220, 2006.

S. Rizvi and S. J. Mulvaney, Extrusion processing with supercritical fluids, US Patent, p.5120559, 1992.

S. H. Alavi, B. K. Gogoi, M. Kahn, B. J. Bowman, and S. Rizvi, Structural properties of protein-stabilized starch-based supercritical fluid extrudates, Food Res Intern, vol.32, pp.107-125, 1999.

S. K. Goel and E. J. Beckman, Generation of microcellular polymers using supercritical CO 2, Cell Polym, vol.12, pp.251-73, 1993.

S. K. Goel and E. J. Beckman, Generation of microcellular polymeric foams using supercritical carbon dioxide. I. Effect of pressure and temperature on nucleation, Polym Eng Sci, vol.34, pp.1137-1184, 1994.

X. Han, K. W. Koelling, D. L. Tomasko, and L. J. Lee, Effect of die temperature on the morphology of microcellular foams, Polym Eng Sci, vol.43, pp.1206-1226, 2003.

J. S. Colton and N. P. Suh, The nucleation of microcellular thermoplastic foam with additives. 1. Theoretical considerations, Polym Eng Sci, vol.27, pp.485-92, 1987.

J. S. Colton and N. P. Suh, The nucleation of microcellular thermoplastic foam with additives. 2. Experimental results and discussion, Polym Eng Sci, vol.27, pp.493-502, 1987.

B. V. Kichatov and A. M. Korshunov, Nucleation of gas bubbles in extrusion foaming of high-pressure polyethylene, Theor Found Chem Eng, vol.39, pp.643-52, 2005.

T. Marchal, Challenges of modelling the extrusion process, Plast Rubber Compos, vol.34, pp.265-70, 2005.

S. Shukla and K. W. Koelling, Classical nucleation theory applied to homogeneous bubble nucleation in the continuous microcellular foaming of the polystyrene-CO 2 system, Ind Eng Chem Res, vol.48, pp.7603-7618, 2009.

K. Taki, T. Nakayama, T. Yatsuzuka, and M. Ohshima, Visual observations of batch and continuous foaming processes, J Cell Plast, vol.39, pp.155-69, 2003.

J. H. Han and C. D. Han, A study of bubble nucleation in a mixture of molten polymer and volatile liquid in a shear flow field, Polym Eng Sci, vol.28, pp.1616-1643, 1988.

C. Nikitine, Elaboration d'un matériau poreux d'Eudragit E100 par extrusion assistée par CO 2 supercritique: de la conception à la compréhension du procédé, SMI-Spécialité Génie des Procédés, 2007.

C. Nikitine, E. Rodier, M. Sauceau, J. J. Letourneau, and J. Fages, Controlling the structure of a porous polymer by coupling supercritical CO 2 and single screw extrusion process, J Appl Polym Sci, vol.115, pp.981-90, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01618294

C. Nikitine, E. Rodier, M. Sauceau, and J. Fages, Residence time distributions of a pharmaceutical grade polymer melt in a single screw extrusion process, Chem Eng Res Design, vol.87, pp.809-825, 2009.

K. Kamar, M. Sauceau, E. Rodier, and J. Fages, Biopolymer foam production using a (SC CO 2 )-assisted extrusion process, Proceedings of the 9th international symposium on supercritical fluids, pp.99-100, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01757390

R. Span and W. Wagner, A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa, J Phys Chem Ref Data, vol.25, pp.1509-96, 1996.

D. Peng and D. Robinson, A new two-constant equation of state, Ind Eng Chem Fundam, vol.15, pp.59-64, 1976.

C. B. Park, A. H. Behravesh, and R. D. Venter, Low density microcellular foam processing in extrusion using CO 2, Polym Eng Sci, vol.38, pp.1812-1835, 1998.

X. Han, K. W. Koelling, D. L. Tomasko, and L. J. Lee, Continuous microcellular polystyrene foam extrusion with supercritical CO 2, Polym Eng Sci, vol.42, pp.2094-106, 2002.

S. J. Mulvaney and S. Rizvi, Extrusion processing with supercritical fluids, Food Technol, vol.47, pp.74-82, 1993.

S. Rizvi and S. J. Mulvaney, Supercritical fluid extrusion process and apparatus, US Patent, p.5417992, 1995.

S. Rizvi, S. J. Mulvaney, and A. S. Sokhey, The combined application of supercritical fluid and extrusion technology, Trends Food Sci Technol, vol.6, pp.232-272, 1995.

A. S. Sokhey, S. Rizvi, and S. J. Mulvaney, Application of supercritical fluid extrusion to cereal processing, Cereal Foods World, vol.41, pp.29-34, 1996.

K. Chen, E. Dogan, and S. Rizvi, Supercritical fluid extrusion of masabased snack chips, Cereal Foods World, vol.47, pp.44-51, 2002.

B. Singh and S. Rizvi, Residence time distribution (RTD) and goodness of mixing (GM) during CO 2 -injection in twin-screw extrusion. Part I: RTD studies, J Food Process Eng, vol.21, pp.91-110, 1998.

B. Singh and S. Rizvi, Residence time distribution (RTD) and goodness of mixing (GM) during CO 2 -injection in twin-screw extrusion. Part II: GM studies, J Food Process Eng, vol.21, pp.111-137, 1998.

B. K. Gogoi, S. H. Alavi, and S. Rizvi, Mechanical properties of proteinstabilized starch-based supercritical fluid extrudates, Int J Food Prop, vol.3, pp.37-58, 2000.

Z. Hicsasmaz, E. Dogan, C. Chu, and S. Rizvi, Leavened dough processing by supercritical fluid extrusion (SCFX), J Agric Food Chem, vol.51, pp.6191-6198, 2003.

K. Chen and S. Rizvi, Rheology and expansion of starch-water-CO 2 mixtures with controlled gelatinization by supercritical fluid extrusion, Int J Food Prop, vol.9, pp.863-76, 2006.

A. Ayoub and S. Rizvi, Properties of supercritical fluid extrusion-based crosslinked starch extrudates, J Appl Polym Sci, vol.107, pp.3663-71, 2008.

I. Mariam, K. Y. Cho, and S. Rizvi, Thermal properties of starch-based biodegradable foams produced using supercritical fluid extrusion (SCFX), Int J Food Prop, vol.11, pp.415-441, 2008.

S. Alavi and S. Rizvi, Strategies for enhancing expansion in starch-based microcellular foams produced by supercritical fluid extrusion, Int J Food Prop, vol.8, pp.23-34, 2005.

K. Y. Cho and S. Rizvi, The time-delayed expansion profile of supercritical fluid extrudates, Food Res Int, vol.41, pp.31-42, 2008.

G. Verreck, A. Decorte, D. Tomasko, A. Arien, J. Peeters et al., The effect of pressurized carbon dioxide as a plasticizer and foaming agent on the hot melt extrusion process and extrudate properties of pharmaceutical polymers, J Supercrit Fluids, vol.38, pp.383-91, 2006.

G. Verreck, A. Decorte, K. Heymans, J. Adriaensen, D. Cleeren et al., The effect of pressurized carbon dioxide as a temporary plasticizer and foaming agent on the hot stage extrusion process and extrudate properties of solid dispersions of itraconazole with PVP-VA 64, Eur J Pharm Sci, vol.26, pp.349-58, 2005.

G. Verreck, A. Decorte, K. Heymans, J. Adriaensen, D. Liu et al., The effect of supercritical CO 2 as a reversible plasticizer and foaming agent on the hot stage extrusion of itraconazole with EC 20 cps, J Supercrit Fluids, vol.40, pp.153-62, 2007.

G. Verreck, A. Decorte, K. Heymans, J. Adriaensen, D. Liu et al., Hot stage extrusion of p-amino salicylic acid with EC using CO 2 as a temporary plasticizer, Int J Pharm, vol.327, pp.45-50, 2006.

H. Benkreira, M. Gale, R. Patel, M. Cox, and J. Paragreen, Novel extrusion dies with rotating rollers for CO 2 -plastic foam production, Int Polym Process, vol.19, pp.111-118, 2004.

R. Gendron, M. F. Champagne, Y. Delaviz, and M. E. Polasky, Foaming polystyrene with a mixture of CO 2 and ethanol, J Cell Plast, vol.42, pp.127-165, 2006.

M. F. Champagne, R. Gendron, C. Vachon, and S. Rampalli, Foaming polyethylene with CO 2 -based mixtures of blowing agents, ANTEC conference proceedings, vol.3, pp.3125-3134, 2004.

J. M. Ferdinand, R. A. Lai-fook, A. L. Ollet, A. C. Smith, and S. A. Clark, Structure by carbon dioxide injection in extrusion cooking, J Food Eng, vol.11, pp.209-233, 1990.

O. Levenspiel, Chemical reaction engineering, 1972.

P. C. Lee, W. Kaewmesri, J. Wang, C. B. Park, J. Pumchusak et al., Effect of die geometry on foaming behaviors of high-melt-strength polypropylene with CO 2, J Appl Polym Sci, vol.109, pp.3122-3154, 2008.

X. Xu and C. B. Park, Effects of the die geometry on the expansion of polystyrene foams blown with carbon dioxide, J Appl Polym Sci, vol.109, pp.3329-3365, 2008.

H. S. Jeong and R. T. Toledo, Twin-screw extrusion at low temperature with carbon dioxide injection to assist expansion: extrudate characteristics, J Food Eng, vol.63, pp.425-457, 2004.

C. B. Park, N. P. Suh, and D. F. Baldwin, Method for providing continuous processing of microcellular and supermicrocellular foamed materials, US Patent, vol.5866053, 1999.

P. C. Lee, G. M. Li, J. Lee, and C. B. Park, Improvement of cell opening by maintaining a high temperature difference in the surface and core of a foam extrudate, J Cell Plast, vol.43, pp.431-475, 2007.

J. Lee, K. Y. Wang, and C. B. Park, Challenge to extrusion of low-density microcellular polycarbonate foams using supercritical carbon dioxide, Ind Eng Chem Res, vol.44, pp.92-101, 2005.

S. Shukla and K. W. Koelling, Steady flow simulation of a polymer-diluent solution through an abrupt axisymmetric contraction using internally consistent rheological scaling, J Appl Polym Sci, vol.106, pp.1053-74, 2007.

I. C. Sanchez and R. H. Lacombe, An elementary molecular theory of classical fluids -pure fluid, J Phys Chem, vol.80, pp.2352-62, 1976.

I. C. Sanchez and R. H. Lacombe, Statistical thermodynamics of polymer solutions, Macromolecules, vol.11, pp.1145-56, 1978.

I. Kikic, Polymer-supercritical fluid interactions, J Supercrit Fluids, vol.47, pp.458-65, 2009.

Q. Huang, B. Seibig, and D. Paul, Polycarbonate hollow fiber membranes by melt extrusion, J Membr Sci, vol.161, pp.287-91, 1999.

M. Sauceau, C. Nikitine, E. Rodier, and J. Fages, Effect of supercritical carbon dioxide on polystyrene extrusion, J Supercrit Fluids, vol.43, pp.367-73, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01829541

J. Vanvuchelen, C. Perugini, M. Deweerdt, L. Chen, and T. Burnham, Microcellular PVC foam for thin wall profile, J Cell Plast, vol.36, pp.148-57, 2000.

C. A. Diaz and L. M. Matuana, Continuous extrusion production of microcellular rigid PVC, J Vinyl Addit Technol, vol.15, pp.211-219, 2009.

S. Doroudiani, C. B. Park, and M. T. Kortschot, Effect of the crystallinity and morphology on the microcellular foam structure of semicrystallines polymer, Polym Eng Sci, vol.36, pp.2645-62, 1996.

S. Doroudiani, C. B. Park, and M. T. Kortschot, Processing and characterization of microcellular foamed high-density polyethylene/isotactic polypropylene blends, Polym Eng Sci, vol.38, pp.1205-1220, 1998.

S. Siripurapu, Y. Gay, J. Royer, M. Adam, J. Desimone et al., Generation of microcellular foams of PVDF and its blends using supercritical carbon dioxide in a continuous process, Polymer, vol.43, pp.5511-5531, 2002.

M. Lee, C. Tzoganakis, and C. B. Park, Extrusion of PE/PS blends with supercritical carbon dioxide, Polym Eng Sci, vol.38, pp.1112-1132, 1998.

C. B. Park, P. C. Lee, J. Wang, and V. Padareva, Strategies for achieving microcellular LDPE foams in extrusion, Cell Polym, vol.25, pp.1-18, 2006.

C. B. Park, L. K. Cheung, and S. W. Song, The effect of talc on cell nucleation in extrusion foam processing of polypropylene with CO 2 and isopentane, Cell Polym, vol.17, pp.221-51, 1998.

P. C. Lee, J. Wang, and C. B. Park, Extrusion of microcellular open-cell LDPEbased sheet foams, J Appl Polym Sci, vol.102, pp.3376-84, 2006.

P. C. Lee, J. Wang, and C. B. Park, Extruded open-cell foams using two semicrystalline polymers with different crystallization temperatures, Ind Eng Chem Res, vol.45, pp.175-81, 2006.

L. J. Lee, C. C. Zeng, X. Cao, X. M. Han, J. Shen et al., Polymer nanocomposite foams, Compos Sci Technol, vol.65, pp.2344-63, 2005.

X. Han, C. Zeng, L. J. Lee, K. W. Koelling, and D. L. Tomasko, Extrusion of polystyrene nanocomposite foams with supercritical CO 2, Polym Eng Sci, vol.43, pp.1261-75, 2003.

W. G. Zheng, Y. H. Lee, and C. B. Park, The effects of exfoliated nano-clay on the extrusion microcellular foaming of amorphous and crystalline nylon, J Cell Plast, vol.42, pp.271-88, 2006.

S. M. Lee, D. C. Shim, and J. W. Lee, Rheology of PP/clay hybrid produced by supercritical CO 2 assisted extrusion, Macromol Res, vol.16, pp.6-14, 2008.

M. A. Treece and J. P. Oberhauser, Processing of polypropylene-clay nanocomposites: single-screw extrusion with in-line supercritical carbon dioxide feed versus twin-screw extrusion, J Appl Polym Sci, vol.103, pp.884-92, 2007.

Q. T. Nguyen and D. G. Baird, An improved technique for exfoliating and dispersing nanoclay particles into polymer matrices using supercritical carbon dioxide, Polymer, vol.48, pp.6923-6956, 2007.

H. P. Hentze and M. Antonietti, Porous polymers and resins for biotechnological and biomedical applications, Rev Mol Biotechnol, vol.90, pp.27-53, 2002.

A. Duarte, J. F. Mano, and R. L. Reis, Perspectives on: supercritical fluid technology for 3D tissue engineering scaffold applications, J Bioact Compat Polym, vol.24, pp.385-400, 2009.

Z. K. Nagy, M. Sauceau, G. Marosi, E. Rodier, and J. Fages, Control of the dissolution rate of an active pharmaceutical ingredient by using melt extrusion coupled with supercritical CO 2, Proceedings 12th European Meeting on Supercritical Fluids, p.72, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01757385

D. Ponomarev, M. Sauceau, C. Nikitine, E. Rodier, and J. Fages, Application of the Markov chain theory for modelling residence time distribution in a single screw extruder, Proceedings 11th European Meeting on Supercritical Fluids. 2008. P TT 4
URL : https://hal.archives-ouvertes.fr/hal-01757402

J. G. Lyons, M. Hallinan, J. E. Kennedy, D. M. Devine, L. M. Geever et al., Preparation of monolithic matrices for oral drug delivery using a supercritical fluid assisted hot melt extrusion process, Int J Pharm, vol.329, pp.62-71, 2007.

J. Reignier, R. Gendron, and M. F. Champagne, Extrusion foaming of poly(lactic acid) blown with CO 2 : toward 100% green material, Cell Polym, vol.26, pp.83-115, 2007.

M. Mihai, M. A. Huneault, B. D. Favis, and H. Li, Extrusion foaming of semicrystalline PLA and PLA/thermoplastic starch blends, Macromol Biosci, vol.7, pp.907-927, 2007.

M. Mihai, M. A. Huneault, and B. D. Favis, Crystallinity development in cellular poly(lactic acid) in the presence of supercritical carbon dioxide, J Appl Polym Sci, vol.113, pp.2920-2952, 2009.

S. T. Lee, L. Kareko, and J. Jun, Study of thermoplastic PLA foam extrusion, J Cell Plast, vol.44, pp.293-305, 2008.
DOI : 10.1177/0021955x08088859

L. M. Matuana and C. A. Diaz, Study of cell nucleation in microcellular poly(lactic acid) foamed with supercritical CO 2 through a continuous-extrusion process, Ind Eng Chem Res, vol.49, pp.2186-93, 2010.