C. Rauwendaal, Polymer Extrusion, 2001.

S. Sharma, S. Mulvaney, and S. Rizvi, Food process engineering : theory and laboratory experiments, 2000.

S. Sharma, S. Mulvaney, and S. Rizvi, Food process engineering : theory and laboratory experiments, 2000.

J. Breitenbach, Melt extrusion: from process to drug delivery technology, European Journal of Pharmaceutics and Biopharmaceutics, vol.54, issue.2, pp.107-117
DOI : 10.1016/S0939-6411(02)00061-9

S. Lee, Foam extrusion: principles and practice, Boca Raton, 2000.
DOI : 10.1201/9781420014129

D. Tomasko, A. Burley, L. Feng, S. Yeh, K. Miyazono et al., Development of CO2 for polymer foam applications, The Journal of Supercritical Fluids, vol.47, issue.3, pp.493-499, 2009.
DOI : 10.1016/j.supflu.2008.10.018

C. Eckert, B. Knutson, and P. Debenedetti, Supercritical fluids as solvents for chemical and materials processing, Nature, vol.383, issue.6598, pp.313-383, 1996.
DOI : 10.1038/383313a0

S. Nalawade, F. Picchioni, and L. Janssen, Supercritical carbon dioxide as a green solvent for processing polymer melts: Processing aspects and applications, Progress in Polymer Science, vol.31, issue.1, pp.19-43, 2006.
DOI : 10.1016/j.progpolymsci.2005.08.002

A. Cooper, Polymer synthesis and processing using supercritical carbon dioxide, Journal of Materials Chemistry, vol.10, issue.2, pp.207-234, 2000.
DOI : 10.1039/a906486i

D. Tomasko, H. Li, D. Liu, X. Han, M. Wingert et al., Applications in the Processing of Polymers, Industrial & Engineering Chemistry Research, vol.42, issue.25, pp.6431-6456, 2003.
DOI : 10.1021/ie030199z

S. Kazarian, Polymer processing with supercritical fluids, Polym Sci, vol.42, pp.78-101, 2000.

Y. Sato, K. Fujiwara, T. Takikawa, S. Takishima, and H. Masuoka, Solubilities and diffusion coefficients of carbon dioxide and nitrogen in polypropylene, high-density polyethylene, and polystyrene under high pressures and temperatures, Fluid Phase Equilibria, vol.162, issue.1-2, pp.261-276, 1999.
DOI : 10.1016/S0378-3812(99)00217-4

D. Gourgouillon, H. Avelino, J. Fareleira, N. Da-ponte, and M. , Simultaneous viscosity and density measurement of supercritical CO2-saturated PEG 400, The Journal of Supercritical Fluids, vol.13, issue.1-3, pp.177-185, 1998.
DOI : 10.1016/S0896-8446(98)00050-3

C. Kwag, C. Manke, and E. Gulari, Rheology of molten polystyrene with dissolved supercritical and near-critical gases, Journal of Polymer Science Part B: Polymer Physics, vol.27, issue.19, pp.2771-2781, 1999.
DOI : 10.1002/(SICI)1099-0488(19991001)37:19<2771::AID-POLB6>3.0.CO;2-9

W. Wang, E. Kramer, and W. Sachse, Effects of high-pressure CO2 on the glass transition temperature and mechanical properties of polystyrene, Journal of Polymer Science: Polymer Physics Edition, vol.20, issue.8, pp.1371-1384, 1982.
DOI : 10.1002/pol.1982.180200804

P. Condo, I. Sanchez, C. Panayiotou, and K. Johnston, Glass transition behavior including retrograde vitrification of polymers with compressed fluid diluents, Macromolecules, vol.25, issue.23, pp.6119-6127, 1992.
DOI : 10.1021/ma00049a007

J. Royer, Y. Gay, M. Adam, J. Desimone, and S. Khan, Polymer melt rheology with high-pressure CO2 using a novel magnetically levitated sphere rheometer, Polymer, vol.43, issue.8, pp.2375-2383, 2002.
DOI : 10.1016/S0032-3861(01)00804-7

S. Areerat, T. Nagata, and M. Ohshima, Measurement and prediction of LDPE/CO2 solution viscosity, Polymer Engineering & Science, vol.40, issue.11, pp.2234-2245, 2002.
DOI : 10.1002/pen.11113

M. Lee, C. Tzoganakis, and C. Park, Effects of supercritical CO2 on the viscosity and morphology of polymer blends, Advances in Polymer Technology, vol.125, issue.4, pp.300-311, 2000.
DOI : 10.1002/1098-2329(200024)19:4<300::AID-ADV6>3.0.CO;2-6

K. Cho and S. Rizvi, 3D microstructure of supercritical fluid extrudates I: Melt rheology and microstructure formation, Food Research International, vol.42, issue.5-6, pp.595-602, 2009.
DOI : 10.1016/j.foodres.2008.12.014

H. Li, L. Lee, and D. Tomasko, Effect of Carbon Dioxide on the Interfacial Tension of Polymer Melts, Industrial & Engineering Chemistry Research, vol.43, issue.2, pp.509-514, 2004.
DOI : 10.1021/ie034092n

P. Jaeger, R. Eggers, and H. Baumgartl, Interfacial properties of high viscous liquids in a supercritical carbon dioxide atmosphere, The Journal of Supercritical Fluids, vol.24, issue.3, pp.203-217, 2002.
DOI : 10.1016/S0896-8446(02)00031-1

L. Jacobs, M. Kemmere, and J. Keurentjes, Sustainable polymer foaming using high pressure carbon dioxide: a review on fundamentals, processes and applications, Green Chemistry, vol.97, issue.7, pp.731-738, 2008.
DOI : 10.1039/b801895b

T. Walker, D. Frankowski, and R. Spontak, Thermodynamics and Kinetic Processes of Polymer Blends and Block Copolymers in the Presence of Pressurized Carbon Dioxide, Advanced Materials, vol.17, issue.5, pp.879-898, 2008.
DOI : 10.1002/adma.200700076

R. Gendron, M. Champagne, and J. Reignier, Supercritical fluids in thermoplastics foaming: Facts or fallacies?, Cell Polym, vol.25, pp.199-220, 2006.

S. Rizvi and S. Mulvaney, Extrusion processing with supercritical fluids, 1992.

S. Alavi, B. Gogoi, M. Kahn, B. Bowman, and S. Rizvi, Structural properties of protein-stabilized starch-based supercritical fluid extrudates, Food Research International, vol.32, issue.2, pp.107-118, 1999.
DOI : 10.1016/S0963-9969(99)00063-0

S. Goel and E. Beckman, Generation of microcellular polymers using supercritical CO 2, Cell Polym, vol.12, pp.251-273, 1993.

S. Goel and E. Beckman, Generation of microcellular polymeric foams using supercritical carbon dioxide. I: Effect of pressure and temperature on nucleation, Polymer Engineering and Science, vol.13, issue.14, pp.1137-1147, 1994.
DOI : 10.1002/pen.760341407

X. Han, K. Koelling, D. Tomasko, and L. Lee, Effect of die temperature on the morphology of microcellular foams, Polymer Engineering & Science, vol.25, issue.6, pp.1206-1220, 2003.
DOI : 10.1002/pen.10102

J. Colton and N. Suh, The nucleation of microcellular thermoplastic foam with additives: Part I: Theoretical considerations, Polymer Engineering and Science, vol.20, issue.7, pp.485-492, 1987.
DOI : 10.1002/pen.760270702

J. Colton and N. Suh, The nucleation of microcellular thermoplastic foam with additives

B. Kichatov and A. Korshunov, Nucleation of Gas Bubbles in Extrusion Foaming of High-Pressure Polyethylene, Theoretical Foundations of Chemical Engineering, vol.40, issue.24, pp.643-652, 2005.
DOI : 10.1007/s11236-005-0129-x

T. Marchal, Challenges of modelling the extrusion process, Plastics, Rubber and Composites, vol.42, issue.5-6, pp.265-270, 2005.
DOI : 10.1002/pen.760302011

S. Shukla and K. Koelling, System, Industrial & Engineering Chemistry Research, vol.48, issue.16, pp.7603-7615, 2009.
DOI : 10.1021/ie8011243

URL : https://hal.archives-ouvertes.fr/inria-00071442

K. Taki, T. Nakayama, T. Yatsuzuka, and M. Ohshima, Visual Observations of Batch and Continuous Foaming Processes, Journal of Cellular Plastics, vol.39, issue.2, pp.155-169, 2003.
DOI : 10.1177/0021955X03039002005

J. Han and C. Han, A study of bubble nucleation in a mixture of molten polymer and volatile liquid in a shear flow field, Polymer Engineering and Science, vol.14, issue.24, pp.1616-1627, 1988.
DOI : 10.1002/pen.760282408

C. Nikitine, Elaboration d'un matériau poreux d'Eudragit E100 par extrusion assistée par CO 2 supercritique : de la conception à la compréhension du procédé, Thèse de doctorat, Ecole des Mines de Paris, SMI-Spécialité Génie des Procédés, 2007.

C. Nikitine, E. Rodier, M. Sauceau, J. Letourneau, and J. Fages, and single screw extrusion process, Journal of Applied Polymer Science, vol.170, issue.2, pp.981-990, 2010.
DOI : 10.1002/app.31031

C. Nikitine, E. Rodier, M. Sauceau, and J. Fages, Residence time distribution of a pharmaceutical grade polymer melt in a single screw extrusion process, Chemical Engineering Research and Design, vol.87, issue.6, pp.809-816, 2009.
DOI : 10.1016/j.cherd.2008.10.008

K. Kamar, M. Sauceau, E. Rodier, and J. Fages, Biopolymer foam production using a (SC CO 2 )-assisted extrusion process, Proceedings 9 th International Symposium on Supercritical Fluids, 2009.

R. Span and W. Wagner, A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple???Point Temperature to 1100 K at Pressures up to 800 MPa, Journal of Physical and Chemical Reference Data, vol.25, issue.6, pp.1509-1596, 1996.
DOI : 10.1063/1.555991

D. Peng and D. Robinson, A New Two-Constant Equation of State, Industrial & Engineering Chemistry Fundamentals, vol.15, issue.1, pp.59-64, 1976.
DOI : 10.1021/i160057a011

C. Park, A. Behravesh, and R. Venter, Low density microcellular foam processing in extrusion using CO2, Polymer Engineering & Science, vol.42, issue.11, pp.1812-1823, 1998.
DOI : 10.1002/pen.10351

X. Han, K. Koelling, D. Tomasko, and L. Lee, Continuous microcellular polystyrene foam extrusion with supercritical CO2, Polymer Engineering & Science, vol.27, issue.11, pp.2094-2106, 2002.
DOI : 10.1002/pen.11100

S. Mulvaney and S. Rizvi, Extrusion processing with supercritical fluids, Food Technol, vol.47, pp.74-82, 1993.

S. Rizvi and S. Mulvaney, Supercritical fluid extrusion process and apparatus, US Patent 5417992, 1995.

S. Rizvi, S. Mulvaney, and A. Sokhey, The combined application of supercritical fluid and extrusion technology, Trends in Food Science & Technology, vol.6, issue.7, pp.232-240, 1995.
DOI : 10.1016/S0924-2244(00)89084-6

A. Sokhey, S. Rizvi, and S. Mulvaney, Application of supercritical fluid extrusion to cereal processing, Cereal Foods World, vol.41, pp.29-34, 1996.

K. Chen, E. Dogan, and S. Rizvi, Supercritical fluid extrusion of masa-based snack chips, Cereal foods world, vol.47, pp.44-51, 2002.

B. Singh and S. Rizvi, -INJECTION IN TWIN-SCREW EXTRUSION PART I: RTD STUDIES, Journal of Food Process Engineering, vol.27, issue.5, pp.91-110, 1998.
DOI : 10.1016/0260-8774(88)90043-X

URL : https://hal.archives-ouvertes.fr/hal-00707792

B. Singh and S. Rizvi, -INJECTION IN TWIN-SCREW EXTRUSION PART II: GM STUDIES, Journal of Food Process Engineering, vol.21, issue.12, pp.111-126, 1998.
DOI : 10.1016/0095-8522(51)90033-5

URL : https://hal.archives-ouvertes.fr/hal-00707792

B. Gogoi, S. Alavi, and S. Rizvi, Mechanical properties of protein???stabilized starch???based supercritical fluid extrudates, International Journal of Food Properties, vol.41, issue.1, pp.37-58, 2000.
DOI : 10.1007/BF00542905

Z. Hicsasmaz, E. Dogan, C. Chu, and S. Rizvi, Leavened Dough Processing by Supercritical Fluid Extrusion (SCFX), Journal of Agricultural and Food Chemistry, vol.51, issue.21, pp.6191-6197, 2003.
DOI : 10.1021/jf034142z

K. Chen and S. Rizvi, Mixtures with Controlled Gelatinization by Supercritical Fluid Extrusion, International Journal of Food Properties, vol.47, issue.4, pp.863-876, 2006.
DOI : 10.1002/pen.760341408

A. Ayoub and S. Rizvi, Properties of supercritical fluid extrusion-based crosslinked starch extrudates, Journal of Applied Polymer Science, vol.74, issue.6, pp.3663-3671, 2008.
DOI : 10.1002/app.27538

I. Mariam, K. Cho, and S. Rizvi, Thermal Properties of Starch-Based Biodegradable Foams Produced Using Supercritical Fluid Extrusion (SCFX), International Journal of Food Properties, vol.61, issue.2, pp.415-426, 2008.
DOI : 10.1002/pen.11563

S. Alavi and S. Rizvi, Strategies for Enhancing Expansion in Starch-Based Microcellular Foams Produced by Supercritical Fluid Extrusion, International Journal of Food Properties, vol.3, issue.1, pp.23-34, 2005.
DOI : 10.1016/S0963-9969(02)00223-5

K. Cho and S. Rizvi, The time-delayed expansion profile of supercritical fluid extrudates, Food Research International, vol.41, issue.1, pp.31-42, 2008.
DOI : 10.1016/j.foodres.2007.09.002

G. Verreck, A. Decorte, D. Tomasko, A. Arien, J. Peeters et al., The effect of pressurized carbon dioxide as a plasticizer and foaming agent on the hot melt extrusion process and extrudate properties of pharmaceutical polymers, The Journal of Supercritical Fluids, vol.38, issue.3, pp.383-391, 2006.
DOI : 10.1016/j.supflu.2005.11.022

G. Verreck, A. Decorte, K. Heymans, J. Adriaensen, D. Cleeren et al., The effect of pressurized carbon dioxide as a temporary plasticizer and foaming agent on the hot stage extrusion process and extrudate properties of solid dispersions of itraconazole with PVP-VA 64, European Journal of Pharmaceutical Sciences, vol.26, issue.3-4, pp.349-358, 2005.
DOI : 10.1016/j.ejps.2005.07.006

G. Verreck, A. Decorte, K. Heymans, J. Adriaensen, D. Liu et al., The effect of supercritical CO2 as a reversible plasticizer and foaming agent on the hot stage extrusion of itraconazole with EC 20cps, The Journal of Supercritical Fluids, vol.40, issue.1, pp.153-162, 2007.
DOI : 10.1016/j.supflu.2006.05.005

G. Verreck, A. Decorte, K. Heymans, J. Adriaensen, D. Liu et al., Hot stage extrusion of p-amino salicylic acid with EC using CO2 as a temporary plasticizer, International Journal of Pharmaceutics, vol.327, issue.1-2, pp.45-50, 2006.
DOI : 10.1016/j.ijpharm.2006.07.024

H. Benkreira, M. Gale, R. Patel, M. Cox, and J. Paragreen, -Plastic Foam Production, International Polymer Processing, vol.19, issue.2, pp.111-117, 2004.
DOI : 10.3139/217.1818

R. Gendron, M. Champagne, Y. Delaviz, and M. Polasky, Foaming Polystyrene with a Mixture of CO2 and Ethanol, Journal of Cellular Plastics, vol.42, issue.2, pp.127-138, 2006.
DOI : 10.1177/0021955X06060948

M. Champagne, R. Gendron, C. Vachon, and S. Rampalli, Foaming polyethylene with CO 2 based mixtures of blowing agents, ANTEC conference proceedings, vol.3, pp.3125-3129, 2004.

J. Ferdinand, R. Lai-fook, A. Ollet, A. Smith, and S. Clark, Structure formation by carbon dioxide injection in extrusion cooking, Journal of Food Engineering, vol.11, issue.3, pp.209-224, 1990.
DOI : 10.1016/0260-8774(90)90028-7

O. Levenspiel, Chemical Reaction Engineering, Industrial & Engineering Chemistry Research, vol.38, issue.11, 1972.
DOI : 10.1021/ie990488g

P. Lee, W. Kaewmesri, J. Wang, C. Park, J. Pumchusak et al., Effect of die geometry on foaming behaviors of high-melt-strength polypropylene with CO2, Journal of Applied Polymer Science, vol.41, issue.5, pp.3122-3132, 2008.
DOI : 10.1002/app.28204

X. Xu and C. Park, Effects of the die geometry on the expansion of polystyrene foams blown with carbon dioxide, Journal of Applied Polymer Science, vol.41, issue.5, pp.3329-3336, 2008.
DOI : 10.1002/app.28274

H. Jeong and R. Toledo, Twin-screw extrusion at low temperature with carbon dioxide injection to assist expansion: extrudate characteristics, Journal of Food Engineering, vol.63, issue.4, pp.425-432, 2004.
DOI : 10.1016/j.jfoodeng.2003.09.026

C. Park, N. Suh, and D. Baldwin, Method for providing continuous processing of microcellular and supermicrocellular foamed materials, US Patent 5866053, 1999.

P. Lee, G. Li, J. Lee, and C. Park, Improvement of Cell Opening by Maintaining a High Temperature Difference in the Surface and Core of a Foam Extrudate, Journal of Cellular Plastics, vol.43, issue.6, pp.431-444, 2007.
DOI : 10.1177/0021955X07079150

J. Lee, K. Wang, and C. Park, Challenge to Extrusion of Low-Density Microcellular Polycarbonate Foams Using Supercritical Carbon Dioxide, Industrial & Engineering Chemistry Research, vol.44, issue.1, pp.92-99, 2005.
DOI : 10.1021/ie0400402

S. Shukla and K. Koelling, Steady flow simulation of a polymer-diluent solution through an abrupt axisymmetric contraction using internally consistent rheological scaling, Journal of Applied Polymer Science, vol.10, issue.2, pp.1053-1074, 2007.
DOI : 10.1002/app.26664

I. Sanchez and R. Lacombe, An elementary molecular theory of classical fluids. Pure fluids, The Journal of Physical Chemistry, vol.80, issue.21, pp.2352-2362, 1976.
DOI : 10.1021/j100562a008

I. Sanchez and R. Lacombe, Statistical Thermodynamics of Polymer Solutions, Macromolecules, vol.11, issue.6, pp.1145-1156, 1978.
DOI : 10.1021/ma60066a017

I. Kikic, Polymer???supercritical fluid interactions, The Journal of Supercritical Fluids, vol.47, issue.3, pp.458-465, 2009.
DOI : 10.1016/j.supflu.2008.10.016

Q. Huang, B. Seibig, and D. Paul, Polycarbonate hollow fiber membranes by melt extrusion, Journal of Membrane Science, vol.161, issue.1-2, pp.287-291, 1999.
DOI : 10.1016/S0376-7388(99)00122-2

M. Sauceau, C. Nikitine, E. Rodier, and J. Fages, Effect of supercritical carbon dioxide on polystyrene extrusion, The Journal of Supercritical Fluids, vol.43, issue.2, pp.367-373, 2007.
DOI : 10.1016/j.supflu.2007.05.014

J. Vanvuchelen, C. Perugini, M. Deweerdt, L. Chen, and T. Burnham, Microcellular PVC Foam for Thin Wall Profile Microcellular PVC Foam for Thin Wall Profile, Journal of Cellular Plastics, vol.36, issue.2, pp.148-157, 2000.
DOI : 10.1106/6MHJ-JPM8-4L8E-A075

C. Diaz and L. Matuana, Continuous extrusion production of microcellular rigid PVC, Journal of Vinyl and Additive Technology, vol.27, issue.4, pp.211-218, 2009.
DOI : 10.1002/vnl.20205

S. Doroudiani, C. Park, and M. Kortschot, Effect of the crystallinity and morphology on the microcellular foam structure of semicrystalline polymers, Polymer Engineering & Science, vol.30, issue.21, pp.2645-2662, 1996.
DOI : 10.1002/pen.10664

S. Doroudiani, C. Park, and M. Kortschot, Processing and characterization of microcellular foamed high-density polythylene/isotactic polypropylene blends, Polymer Engineering & Science, vol.30, issue.7, pp.1205-1215, 1998.
DOI : 10.1002/pen.10289

S. Siripurapu, Y. Gay, J. Royer, M. Adam, J. Desimone et al., Generation of microcellular foams of PVDF and its blends using supercritical carbon dioxide in a continuous process, Polymer, vol.43, issue.20, pp.5511-5520, 2002.
DOI : 10.1016/S0032-3861(02)00407-X

M. Lee, C. Tzoganakis, and C. Park, Extrusion of PE/PS blends with supercritical carbon dioxide, Polymer Engineering & Science, vol.53, issue.7, pp.1112-1120, 1998.
DOI : 10.1002/pen.10278

C. Park, P. Lee, J. Wang, and V. Padareva, Strategies for achieving microcellular LDPE foams in extrusion, Cell Polym, vol.25, pp.1-18, 2006.

C. Park, L. Cheung, and S. Song, The effect of talc on cell nucleation in extrusion foam processing of polypropylene with CO 2 and isopentane, Cell Polym, vol.17, pp.221-251, 1998.

P. Lee, J. Wang, and C. Park, Extrusion of microcellular open-cell LDPE-based sheet foams, Journal of Applied Polymer Science, vol.38, issue.4, pp.3376-3384, 2006.
DOI : 10.1002/app.24868

P. Lee, J. Wang, and C. Park, Extruded Open-Cell Foams Using Two Semicrystalline Polymers with Different Crystallization Temperatures, Industrial & Engineering Chemistry Research, vol.45, issue.1, pp.175-181, 2006.
DOI : 10.1021/ie050498j

L. Lee, C. Zeng, X. Cao, X. Han, J. Shen et al., Polymer nanocomposite foams, Composites Science and Technology, vol.65, issue.15-16, pp.2344-2363, 2005.
DOI : 10.1016/j.compscitech.2005.06.016

X. Han, C. Zeng, L. Lee, K. Koelling, and D. Tomasko, Extrusion of polystyrene nanocomposite foams with supercritical CO2, Polymer Engineering & Science, vol.31, issue.6, pp.1261-1275, 2003.
DOI : 10.1002/pen.10107

W. Zheng, Y. Lee, and C. Park, The Effects of Exfoliated Nano-clay on the Extrusion Microcellular Foaming of Amorphous and Crystalline Nylon, Journal of Cellular Plastics, vol.42, issue.4, pp.271-288, 2006.
DOI : 10.1177/0021955X06063514

S. Lee, D. Shim, and J. Lee, Rheology of PP/Clay hybrid produced by supercritical CO2 assisted extrusion, Macromolecular Research, vol.14, issue.1, pp.6-14, 2008.
DOI : 10.1007/BF03218954

M. Treece and J. Oberhauser, Processing of polypropylene???clay nanocomposites: Single-screw extrusion with in-line supercritical carbon dioxide feed versus twin-screw extrusion, Journal of Applied Polymer Science, vol.98, issue.2, pp.884-892, 2007.
DOI : 10.1002/app.25226

Q. Nguyen and D. Baird, An improved technique for exfoliating and dispersing nanoclay particles into polymer matrices using supercritical carbon dioxide, Polymer, vol.48, issue.23, pp.6923-6933, 2007.
DOI : 10.1016/j.polymer.2007.09.015

H. Hentze and M. Antonietti, Porous polymers and resins for biotechnological and biomedical applications, Reviews in Molecular Biotechnology, vol.90, issue.1, pp.27-53, 2002.
DOI : 10.1016/S1389-0352(01)00046-0

A. Duarte, J. Mano, and R. Reis, Perspectives on: Supercritical Fluid Technology for 3D Tissue Engineering Scaffold Applications, Journal of Bioactive and Compatible Polymers, vol.24, issue.4, pp.385-400, 2009.
DOI : 10.1177/0883911509105796

Z. Nagy, M. Sauceau, K. Nyúl, E. Rodier, B. Vajna et al., Use of supercritical CO2-aided and conventional melt extrusion for enhancing the dissolution rate of an active pharmaceutical ingredient, Polymers for Advanced Technologies, vol.19, issue.5, pp.909-918, 2012.
DOI : 10.1002/pat.1991

D. Ponomarev, C. Nikitine, M. Sauceau, E. Rodier, V. Mizonov et al., Application of the Markov chain theory for modelling residence time distribution in a single screw extruder, Chem Eng Sci, vol.50, p.21412154, 2012.

J. Lyons, M. Hallinan, J. Kennedy, D. Devine, L. Geever et al., Preparation of monolithic matrices for oral drug delivery using a supercritical fluid assisted hot melt extrusion process, International Journal of Pharmaceutics, vol.329, issue.1-2, pp.62-71, 2007.
DOI : 10.1016/j.ijpharm.2006.08.028

J. Reignier, R. Gendron, and M. Champagne, Extrusion foaming of poly(lactic acid) blown with CO 2 : Toward 100% green material, Cell Polym, vol.26, pp.83-115, 2007.

M. Mihai, M. Huneault, B. Favis, and H. Li, Extrusion Foaming of Semi-Crystalline PLA and PLA/Thermoplastic Starch Blends, Macromolecular Bioscience, vol.251, issue.53, pp.907-920, 2007.
DOI : 10.1002/mabi.200700080

M. Mihai, M. Huneault, and B. Favis, Crystallinity development in cellular poly(lactic acid) in the presence of supercritical carbon dioxide, Journal of Applied Polymer Science, vol.117, issue.5, pp.2920-2932, 2009.
DOI : 10.1002/app.30338

S. Lee, L. Kareko, and J. Jun, Study of Thermoplastic PLA Foam Extrusion, Journal of Cellular Plastics, vol.44, issue.4, pp.293-305, 2008.
DOI : 10.1177/0021955X08088859

L. Matuana and C. Diaz, through a Continuous-Extrusion Process, Industrial & Engineering Chemistry Research, vol.49, issue.5, pp.2186-2193, 2010.
DOI : 10.1021/ie9011694