Novel fabrication of Alloy 625 and MCrAlY bond coat by laser powder bed fusion and microstructure control - THESE Mines Albi Accéder directement au contenu
Thèse Année : 2020

Novel fabrication of Alloy 625 and MCrAlY bond coat by laser powder bed fusion and microstructure control

Nouvelle fabrication de l'alliage 625 et du revêtement de liaison MCrAlY par la fusion laser sélective sur lit de poudre et contrôle des microstructures

Jiwon Lee
  • Fonction : Auteur

Résumé

In this study, Alloy 625 was fabricated by one of the most commonly used additive manufacturing (AM) methods, laser powder bed fusion (L-PBF), and its mechanical properties were evaluated at various temperatures. The L-PBF fabricated Alloy 625 showed high strength and relatively poor elongation. Thus, some heat treatments were applied to improve its performance. A solid-solution heat treatment with a temperature of more than 1000 °C was applied to the L-PBF Alloy 625, resulting in recrystallization because of high energy stored within the alloy attributed by high density of dislocations. This modified microstructure of the L-PBF Alloy 625 sample showed the required strength under tensile testing at room temperature (higher strength than wrought Alloy 625 and greater elongation than L-PBF as-built alloy). In view of enhancing mechanical properties at high temperature, a grain boundary serration (GBS) heat treatment was specifically designed for L-PBF Alloy 625. Because this was the first attempt to produce GBS in a high-Nb-content alloy, it was necessary to understand its mechanism first. To induce GBS, it is necessary for large solute atoms to move near the grain boundaries (GBs). Therefore, the GBS heat treatment was modified for application to the L-PBF Alloy 625. The specially designed GBS heat treatment successfully induced the zigzag patterns of serrated GBs for the first time. This GBS L-PBF Alloy 625 showed improved high-temperature mechanical properties in terms of increased ductility and elimination of the dynamic strain aging (DSA) effect at elevated temperatures. To further improve the high-temperature property of the L-PBF Alloy 625, NiCrAlY bond coat was applied to the Alloy 625 substrate by the same method (L-PBF) for the first time to improve the efficiency of the production process and increase the resistance to oxidation. Although their different thermal properties led to many trials and errors in the manufacturing of the material, the optimal parameters for applying NiCrAlY bond coat deposition by L-PBF were set and verified to assess the potential for the process to be commercialized. The remelting characteristic of L-PBF induced good metallurgical bonding between the substrate and coating, which indicates good stability. The oxidation behavior of the NiCrAlY-coated Alloy 625 was characterized by thermal gravimetric analysis (TGA) and thermal shock testing; the results indicated that the novel coated material had higher resistance to oxidation than bulk Alloy 625. Therefore, the GBS heat treatment together with efficient NiCrAlY coating can greatly improve the high-temperature mechanical properties of L-PBF manufactured Alloy 625.
Dans cette étude, l'alliage 625 a été élaboré par l'une des méthodes de fabrication additive (AM) les plus couramment utilisées, la fusion laser sélective sur lit de poudre (L-PBF), et ses propriétés mécaniques ont été évaluées à différentes températures. L'alliage 625 fabriqué par L-PBF a montré une résistance élevée et un allongement à la rupture médiocre. Ainsi, des traitements thermiques ont été appliqués pour améliorer ses performances. Un traitement thermique de mise en solution à une température supérieure à 1000 °C a été appliquée à l'alliage L-PBF 625, ce qui a entraîné une recristallisation en raison de l’énergie stockée par le matériau attribuée à la forte densité de dislocations présentes dans l’alliage. Cette microstructure modifiée a montré une résistance satisfaisante lors des essais de traction à température ambiante (résistance plus élevée que l'alliage corroyé 625 et allongement supérieur à l'alliage L-PBF brut de fabrication). À l'étape suivante, l'alliage L-PBF 625 recristallisé a été soumis à un traitement thermique de Grain Boundary Serration (GBS, dentelure des joints de grains) pour améliorer ses propriétés mécaniques à haute température. Comme il s'agissait de la première tentative pour générer la GBS d'un alliage à haute teneur en Nb, il était d'abord important de comprendre le mécanisme GBS. Pour induire le GBS, il est nécessaire que les larges atomes de soluté se déplacent près des joints de grains (GB). Par conséquent, le traitement thermique GBS a été modifié pour être appliqué à l'alliage L-PBF 625. Le traitement thermique de GBS spécialement conçu a réussi à induire pour la première fois les motifs en zigzag des GB dentelés. Cet alliage GB-L-PBF dentelé 625 a montré des propriétés mécaniques améliorées à haute température en termes de ductilité accrue et d'élimination de l'effet de vieillissement dynamique (DSA). Pour améliorer davantage les propriétés à haute température de l'alliage L-PBF 625, un revêtement de liaison NiCrAlY a été nouvellement appliqué au substrat en alliage 625 par la même méthode (L-PBF) pour améliorer l'efficacité du processus de production et augmenter la résistance à l'oxydation/corrosion à haute température. Bien que leurs différentes propriétés thermiques aient conduit à de nombreux essais et erreurs dans la fabrication du matériau, les paramètres optimaux ont été définis et vérifiés pour évaluer le potentiel de commercialisation du procédé. La caractéristique de refusion du L-PBF a induit une bonne liaison entre le substrat et le revêtement, ce qui indique une bonne stabilité. Le comportement à l'oxydation de l'alliage 625 revêtu de NiCrAlY a été caractérisé par analyse thermo-gravimétrique (TGA) et des tests de chocs thermiques ; les résultats ont indiqué que le nouveau matériau avait une résistance à l'oxydation plus élevée que l'alliage 625 brut de fabrication. Par conséquent, le traitement thermique de GBS associé à un revêtement NiCrAlY efficace peut améliorer considérablement les propriétés mécaniques à haute température de l'alliage 625 fabriqué par L-PBF.
Fichier principal
Vignette du fichier
LeeJiwonDiff.pdf (24.76 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-03070795 , version 1 (16-12-2020)

Identifiants

  • HAL Id : tel-03070795 , version 1

Citer

Jiwon Lee. Novel fabrication of Alloy 625 and MCrAlY bond coat by laser powder bed fusion and microstructure control. Materials. Ecole des Mines d'Albi-Carmaux; Changwon National University, 2020. English. ⟨NNT : 2020EMAC0008⟩. ⟨tel-03070795⟩
315 Consultations
45 Téléchargements

Partager

Gmail Facebook X LinkedIn More